dc.contributor.author | Linja, Joakim | |
dc.contributor.author | Hämäläinen, Joonas | |
dc.contributor.author | Nieminen, Paavo | |
dc.contributor.author | Kärkkäinen, Tommi | |
dc.date.accessioned | 2022-11-16T11:01:14Z | |
dc.date.available | 2022-11-16T11:01:14Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Linja, J., Hämäläinen, J., Nieminen, P., & Kärkkäinen, T. (2023). Feature selection for distance-based regression : An umbrella review and a one-shot wrapper. <i>Neurocomputing</i>, <i>518</i>, 344-359. <a href="https://doi.org/10.1016/j.neucom.2022.11.023" target="_blank">https://doi.org/10.1016/j.neucom.2022.11.023</a> | |
dc.identifier.other | CONVID_160101260 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/83945 | |
dc.description.abstract | Feature selection (FS) may improve the performance, cost-efficiency, and understandability of supervised machine learning models. In this paper, FS for the recently introduced distance-based supervised machine learning model is considered for regression problems. The study is contextualized by first providing an umbrella review (review of reviews) of recent development in the research field. We then propose a saliency-based one-shot wrapper algorithm for FS, which is called MAS-FS. The algorithm is compared with a set of other popular FS algorithms, using a versatile set of simulated and benchmark datasets. Finally, experimental results underline the usefulness of FS for regression, confirming the utility of certain filter algorithms and particularly the proposed wrapper algorithm. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | Neurocomputing | |
dc.rights | CC BY 4.0 | |
dc.subject.other | distance-based method | |
dc.subject.other | feature selection | |
dc.subject.other | feature saliency | |
dc.subject.other | wrapper algorithm | |
dc.subject.other | EMLM | |
dc.title | Feature selection for distance-based regression : An umbrella review and a one-shot wrapper | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202211165239 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tekniikka | fi |
dc.contributor.oppiaine | Computing Education Research | fi |
dc.contributor.oppiaine | Tutkintokoulutus | fi |
dc.contributor.oppiaine | Koulutusteknologia ja kognitiotiede | fi |
dc.contributor.oppiaine | Human and Machine based Intelligence in Learning | fi |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Engineering | en |
dc.contributor.oppiaine | Computing Education Research | en |
dc.contributor.oppiaine | Degree Education | en |
dc.contributor.oppiaine | Learning and Cognitive Sciences | en |
dc.contributor.oppiaine | Human and Machine based Intelligence in Learning | en |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 344-359 | |
dc.relation.issn | 0925-2312 | |
dc.relation.volume | 518 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2022 The Authors. Published by Elsevier B.V. | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 351579 | |
dc.relation.grantnumber | 315550 | |
dc.subject.yso | tekoäly | |
dc.subject.yso | algoritmit | |
dc.subject.yso | parantaminen (paremmaksi muuttaminen) | |
dc.subject.yso | koneoppiminen | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2616 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p14524 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p4229 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1016/j.neucom.2022.11.023 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Others, AoF | en |
jyx.fundingprogram | Academy Programme, AoF | en |
jyx.fundingprogram | Muut, SA | fi |
jyx.fundingprogram | Akatemiaohjelma, SA | fi |
jyx.fundinginformation | This work has been supported by the Academy of Finland through the projects 315550 (HNP-AI) and 351579 (MLNovCat). We acknowledge grants of computer capacity from the Finnish Grid and Cloud Infrastructure (FCCI; persistent identifier urn:nbn:fi:research-infras-2016072533). | |
dc.type.okm | A1 | |