Feature-Based Benchmarking of Distance-Based Multi/Many-objective Optimisation Problems : A Machine Learning Perspective
Liefooghe, A., Verel, S., Chugh, T., Fieldsend, J., Allmendinger, R., & Miettinen, K. (2023). Feature-Based Benchmarking of Distance-Based Multi/Many-objective Optimisation Problems : A Machine Learning Perspective. In M. Emmerich, A. Deutz, H. Wang, A. V. Kononova, B. Naujoks, K. Li, K. Miettinen, & I. Yevseyeva (Eds.), Evolutionary Multi-Criterion Optimization : 12th International Conference, EMO 2023, Leiden, The Netherlands, March 20–24, 2023, Proceedings (pp. 260-273). Springer. Lecture Notes in Computer Science, 13970. https://doi.org/10.1007/978-3-031-27250-9_19
Julkaistu sarjassa
Lecture Notes in Computer ScienceTekijät
Toimittajat
Li, Ke |
Päivämäärä
2023Oppiaine
Laskennallinen tiedeMultiobjective Optimization GroupPäätöksen teko monitavoitteisestiComputational ScienceMultiobjective Optimization GroupDecision analytics utilizing causal models and multiobjective optimizationTekijänoikeudet
© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
We consider the application of machine learning techniques to gain insights into the effect of problem features on algorithm performance, and to automate the task of algorithm selection for distance-based multi- and many-objective optimisation problems. This is the most extensive benchmark study of such problems to date. The problem features can be set directly by the problem generator, and include e.g. the number of variables, objectives, local fronts, and disconnected Pareto sets. Using 945 problem configurations (leading to 28350
instances) of varying complexity, we find that the problem features and the available optimisation budget (i) affect the considered algorithms (NSGA-II, IBEA, MOEA/D, and random search) in different ways and that (ii) it is possible to recommend a relevant algorithm based on problem features.
Julkaisija
SpringerEmojulkaisun ISBN
978-3-031-27249-3Konferenssi
International Conference on Evolutionary Multi-Criterion OptimizationKuuluu julkaisuun
Evolutionary Multi-Criterion Optimization : 12th International Conference, EMO 2023, Leiden, The Netherlands, March 20–24, 2023, ProceedingsISSN Hae Julkaisufoorumista
0302-9743Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/178488033
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Feature selection for distance-based regression : An umbrella review and a one-shot wrapper
Linja, Joakim; Hämäläinen, Joonas; Nieminen, Paavo; Kärkkäinen, Tommi (Elsevier, 2023)Feature selection (FS) may improve the performance, cost-efficiency, and understandability of supervised machine learning models. In this paper, FS for the recently introduced distance-based supervised machine learning ... -
Automatic surrogate modelling technique selection based on features of optimization problems
Saini, Bhupinder Singh; Lopez-Ibanez, Manuel; Miettinen, Kaisa (ACM, 2019)A typical scenario when solving industrial single or multiobjective optimization problems is that no explicit formulation of the problem is available. Instead, a dataset containing vectors of decision variables together ... -
A feature rich distance-based many-objective visualisable test problem generator
Fieldsend, Jonathan; Chugh, Tinkle; Allmendinger, Richard; Miettinen, Kaisa (ACM, 2019)In optimiser analysis and design it is informative to visualise how a search point/population moves through the design space over time. Visualisable distance-based many-objective optimisation problems have been developed ... -
Automatic social distance estimation for photographic studies : Performance evaluation, test benchmark, and algorithm
Seker, Mert; Männistö, Anssi; Iosifidis, Alexandros; Raitoharju, Jenni (Elsevier, 2022)The social distancing regulations introduced to slow down the spread of COVID-19 virus directly affect a basic form of non-verbal communication, and there may be longer term impacts on human behavior and culture that remain ... -
Exact extension of the DIRECT algorithm to multiple objectives
Lovison, Alberto; Miettinen, Kaisa (American Institute of Physics, 2019)The direct algorithm has been recognized as an efficient global optimization method which has few requirements of regularity and has proven to be globally convergent in general cases. direct has been an inspiration or has ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.