Näytä suppeat kuvailutiedot

dc.contributor.authorViolo, Ivan Yuri
dc.date.accessioned2022-11-01T10:30:11Z
dc.date.available2022-11-01T10:30:11Z
dc.date.issued2022
dc.identifier.citationViolo, I. Y. (2022). A remark on two notions of flatness for sets in the Euclidean space. <i>Journal fur die reine und angewandte Mathematik</i>, <i>2022</i>(791), 157-171. <a href="https://doi.org/10.1515/crelle-2022-0043" target="_blank">https://doi.org/10.1515/crelle-2022-0043</a>
dc.identifier.otherCONVID_151641511
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/83742
dc.description.abstractIn this note we compare two ways of measuring the n-dimensional “flatness” of a set S⊂RdS⊂ℝd , where n∈Nn∈ℕ and d>nd>n . The first is to consider the classical Reifenberg-flat numbers α(x,r)α⁢(x,r) ( x∈Sx∈S , r>0r>0 ), which measure the minimal scaling-invariant Hausdorff distances in Br(x)Br⁢(x) between S and n-dimensional affine subspaces of Rdℝd . The second is an “intrinsic” approach in which we view the same set S as a metric space (endowed with the induced Euclidean distance). Then we consider numbers a(x,r)𝖺⁢(x,r) that are the scaling-invariant Gromov–Hausdorff distances between balls centered at x of radius r in S and the n-dimensional Euclidean ball of the same radius. As main result of our analysis we make rigorous a phenomenon, first noted by David and Toro, for which the numbers a(x,r)𝖺⁢(x,r) behaves as the square of the numbers α(x,r)α⁢(x,r) . Moreover, we show how this result finds application in extending the Cheeger–Colding intrinsic-Reifenberg theorem to the biLipschitz case. As a by-product of our arguments, we deduce analogous results also for the Jones’ numbers β (i.e. the one-sided version of the numbers α).en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherWalter de Gruyter GmbH
dc.relation.ispartofseriesJournal fur die reine und angewandte Mathematik
dc.rightsIn Copyright
dc.titleA remark on two notions of flatness for sets in the Euclidean space
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202211015047
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange157-171
dc.relation.issn0075-4102
dc.relation.numberinseries791
dc.relation.volume2022
dc.type.versionpublishedVersion
dc.rights.copyright© De Gruyter 2022
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysomatemaattinen analyysi
dc.subject.ysomatematiikka
dc.subject.ysoeuklidinen geometria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p19485
jyx.subject.urihttp://www.yso.fi/onto/yso/p3160
jyx.subject.urihttp://www.yso.fi/onto/yso/p9474
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1515/crelle-2022-0043
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright