dc.contributor.author | Violo, Ivan Yuri | |
dc.date.accessioned | 2022-11-01T10:30:11Z | |
dc.date.available | 2022-11-01T10:30:11Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Violo, I. Y. (2022). A remark on two notions of flatness for sets in the Euclidean space. <i>Journal fur die reine und angewandte Mathematik</i>, <i>2022</i>(791), 157-171. <a href="https://doi.org/10.1515/crelle-2022-0043" target="_blank">https://doi.org/10.1515/crelle-2022-0043</a> | |
dc.identifier.other | CONVID_151641511 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/83742 | |
dc.description.abstract | In this note we compare two ways of measuring the n-dimensional “flatness” of a set S⊂RdS⊂ℝd , where n∈Nn∈ℕ and d>nd>n . The first is to consider the classical Reifenberg-flat numbers α(x,r)α(x,r) ( x∈Sx∈S , r>0r>0 ), which measure the minimal scaling-invariant Hausdorff distances in Br(x)Br(x) between S and n-dimensional affine subspaces of Rdℝd . The second is an “intrinsic” approach in which we view the same set S as a metric space (endowed with the induced Euclidean distance). Then we consider numbers a(x,r)𝖺(x,r) that are the scaling-invariant Gromov–Hausdorff distances between balls centered at x of radius r in S and the n-dimensional Euclidean ball of the same radius. As main result of our analysis we make rigorous a phenomenon, first noted by David and Toro, for which the numbers a(x,r)𝖺(x,r) behaves as the square of the numbers α(x,r)α(x,r) . Moreover, we show how this result finds application in extending the Cheeger–Colding intrinsic-Reifenberg theorem to the biLipschitz case. As a by-product of our arguments, we deduce analogous results also for the Jones’ numbers β (i.e. the one-sided version of the numbers α). | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Walter de Gruyter GmbH | |
dc.relation.ispartofseries | Journal fur die reine und angewandte Mathematik | |
dc.rights | In Copyright | |
dc.title | A remark on two notions of flatness for sets in the Euclidean space | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202211015047 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 157-171 | |
dc.relation.issn | 0075-4102 | |
dc.relation.numberinseries | 791 | |
dc.relation.volume | 2022 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © De Gruyter 2022 | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | matemaattinen analyysi | |
dc.subject.yso | matematiikka | |
dc.subject.yso | euklidinen geometria | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p19485 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3160 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p9474 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1515/crelle-2022-0043 | |
dc.type.okm | A1 | |