University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Pro gradu -tutkielmat
  • View Item
JYX > Opinnäytteet > Pro gradu -tutkielmat > View Item

Poincaré duality for open sets in Euclidean spaces

Thumbnail
View/Open
480.9 Kb

Downloads:  
Show download detailsHide download details  
Authors
Moisala, Terhi
Date
2016
Discipline
MatematiikkaMathematics

 
Todistamme tässä työssä Poincarén dualiteetin Euklidisten avaruuksien avoimille joukoille. Annamme lyhyen johdatuksen differentiaaligeometriaan ja määrittelemme de Rham -kohomologian käsitteen. Itse Poincarén dualiteetin todistuksen aloitamme muutamalla aputuloksella. Näytämme ensin, että Poincarén dualiteetti pätee joukoille, jotka ovat diffeomorfisia avaruuteen R^n . Todis- tamme sitten Poincarén dualiteetin avointen joukkojen yhdisteille erinäisten lisäoletusten vallitessa. Tätä varten esittelemme Mayer–Vietoris jonon de Rham -kohomologialle. Lopulta näytämme Poincarén dualiteetin mielivaltaiselle avoimelle joukolle käytten Whitney-jakoa. Annamme myös havainnollistavan esimerkin Poincarén dualiteetista punkteeratussa tasossa.
 
In this thesis we prove the Poincaré duality for open sets in Euclidean spaces. We start with a brief introduction to differential geometry and introduce then the de Rham cohomology. The actual proof begins with some auxiliary results. We prove first the Poincaré duality for sets that are diffeomorphic to R^n . We then introduce the Mayer–Vietoris sequence for de Rham cohomology and show that the Poincaré duality holds for unions of open sets with some additional assumptions. Finally we prove the Poincaré duality for an arbitrary open set using the Whitney decomposition. We give also an illustrative example of the Poincaré duality in the punctured plane.
 
Keywords
differentiaaligeometria euklidinen geometria
URI

http://urn.fi/URN:NBN:fi:jyu-201603301961

Metadata
Show full item record
Collections
  • Pro gradu -tutkielmat [24534]

Related items

Showing items with similar title or keywords.

  • A remark on two notions of flatness for sets in the Euclidean space 

    Violo, Ivan Yuri (Walter de Gruyter GmbH, 2022)
    In this note we compare two ways of measuring the n-dimensional “flatness” of a set S⊂RdS⊂ℝd , where n∈Nn∈ℕ and d>nd>n . The first is to consider the classical Reifenberg-flat numbers α(x,r)α⁢(x,r) ( x∈Sx∈S , r>0r>0 ), ...
  • Eukleideen geometriaa 

    Joutsen, Elina (2018)
    Eukleides Aleksandrialainen oli kreikkalainen matemaatikko, joka loi noin 300 eaa. euklidisen geometrian. Hän julkaisi euklidisen geometrian perustana olevat aksioomat ja perusolettamukset teoksessaan Alkeet. Eukleideen ...
  • Euklidisen ja hyperbolisen geometrian malleja 

    Salmela, Erkki (2008)
  • Circular Forms in Aleksis Kivi’s Texts 

    Kukkonen, Tiina Katriina (Tessellations Publishing, 2016)
    In this paper, I identify and analyse regular geometric forms that appear in nineteenth-century Finnish author Aleksis Kivi’s texts. His characters and his narrators exemplify these forms to the reader. The characters’ ...
  • Duality of moduli in regular toroidal metric spaces 

    Lohvansuu, Atte (Finnish Mathematical Society, 2021)
    We generalize a result of Freedman and He [4, Theorem 2.5], concerning the duality of moduli and capacities in solid tori, to sufficiently regular metric spaces. This is a continuation of the work of the author and Rajala ...
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre