Näytä suppeat kuvailutiedot

dc.contributor.authorPrezja, Fabi
dc.contributor.authorPölönen, Ilkka
dc.contributor.authorÄyrämö, Sami
dc.contributor.authorRuusuvuori, Pekka
dc.contributor.authorKuopio, Teijo
dc.date.accessioned2022-08-16T09:02:58Z
dc.date.available2022-08-16T09:02:58Z
dc.date.issued2022
dc.identifier.citationPrezja, F., Pölönen, I., Äyrämö, S., Ruusuvuori, P., & Kuopio, T. (2022). H&E Multi-Laboratory Staining Variance Exploration with Machine Learning. <i>Applied Sciences</i>, <i>12</i>(15), Article 7511. <a href="https://doi.org/10.3390/app12157511" target="_blank">https://doi.org/10.3390/app12157511</a>
dc.identifier.otherCONVID_150967162
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/82586
dc.description.abstractIn diagnostic histopathology, hematoxylin and eosin (H&E) staining is a critical process that highlights salient histological features. Staining results vary between laboratories regardless of the histopathological task, although the method does not change. This variance can impair the accuracy of algorithms and histopathologists’ time-to-insight. Investigating this variance can help calibrate stain normalization tasks to reverse this negative potential. With machine learning, this study evaluated the staining variance between different laboratories on three tissue types. We received H&E-stained slides from 66 different laboratories. Each slide contained kidney, skin, and colon tissue samples stained by the method routinely used in each laboratory. The samples were digitized and summarized as red, green, and blue channel histograms. Dimensions were reduced using principal component analysis. The data projected by principal components were inserted into the k-means clustering algorithm and the k-nearest neighbors classifier with the laboratories as the target. The k-means silhouette index indicated that K = 2 clusters had the best separability in all tissue types. The supervised classification result showed laboratory effects and tissue-type bias. Both supervised and unsupervised approaches suggested that tissue type also affected inter-laboratory variance. We suggest tissue type to also be considered upon choosing the staining and color-normalization approach.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherMDPI
dc.relation.ispartofseriesApplied Sciences
dc.rightsCC BY 4.0
dc.subject.otherHE-värjäys
dc.subject.otherhematoksyliini-eosiini-värjäys
dc.subject.otherhistopatologia
dc.subject.otherH&E
dc.subject.otherhistopathology
dc.subject.othermachine learning
dc.subject.otherclustering
dc.subject.otherrand index
dc.subject.otherk-means
dc.subject.otherstain normalization
dc.titleH&E Multi-Laboratory Staining Variance Exploration with Machine Learning
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202208164130
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineHuman and Machine based Intelligence in Learningfi
dc.contributor.oppiaineComputing, Information Technology and Mathematicsfi
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineSolu- ja molekyylibiologiafi
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineHuman and Machine based Intelligence in Learningen
dc.contributor.oppiaineComputing, Information Technology and Mathematicsen
dc.contributor.oppiaineComputational Scienceen
dc.contributor.oppiaineCell and Molecular Biologyen
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2076-3417
dc.relation.numberinseries15
dc.relation.volume12
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 by the authors. Licensee MDPI, Basel, Switzerland
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumberA75000
dc.subject.ysodiagnostiikka
dc.subject.ysokoneoppiminen
dc.subject.ysolaboratoriotekniikka
dc.subject.ysoväriaineet
dc.subject.ysopatologia
dc.subject.ysotekoäly
dc.subject.ysokuvantaminen
dc.subject.ysokudokset
dc.subject.ysonäytteet
dc.subject.ysohistologia
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p416
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p19594
jyx.subject.urihttp://www.yso.fi/onto/yso/p2176
jyx.subject.urihttp://www.yso.fi/onto/yso/p7343
jyx.subject.urihttp://www.yso.fi/onto/yso/p2616
jyx.subject.urihttp://www.yso.fi/onto/yso/p3532
jyx.subject.urihttp://www.yso.fi/onto/yso/p4820
jyx.subject.urihttp://www.yso.fi/onto/yso/p17934
jyx.subject.urihttp://www.yso.fi/onto/yso/p20287
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3390/app12157511
dc.relation.funderCouncil of Tampere Regionen
dc.relation.funderPirkanmaan liittofi
jyx.fundingprogramERDF European Regional Development Fund, React-EUen
jyx.fundingprogramEAKR Euroopan aluekehitysrahasto, React-EUfi
jyx.fundinginformationThe work is related to the AI Hub Central Finland project that has received funding from Council of Tampere Region (Decision number: A75000) and European Regional Development Fund React‐EU (2014–2023) and Leverage from the EU 2014–2020. This project has been funded with support from the European Commission.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0