dc.contributor.author | Prezja, Fabi | |
dc.contributor.author | Pölönen, Ilkka | |
dc.contributor.author | Äyrämö, Sami | |
dc.contributor.author | Ruusuvuori, Pekka | |
dc.contributor.author | Kuopio, Teijo | |
dc.date.accessioned | 2022-08-16T09:02:58Z | |
dc.date.available | 2022-08-16T09:02:58Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Prezja, F., Pölönen, I., Äyrämö, S., Ruusuvuori, P., & Kuopio, T. (2022). H&E Multi-Laboratory Staining Variance Exploration with Machine Learning. <i>Applied Sciences</i>, <i>12</i>(15), Article 7511. <a href="https://doi.org/10.3390/app12157511" target="_blank">https://doi.org/10.3390/app12157511</a> | |
dc.identifier.other | CONVID_150967162 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/82586 | |
dc.description.abstract | In diagnostic histopathology, hematoxylin and eosin (H&E) staining is a critical process that highlights salient histological features. Staining results vary between laboratories regardless of the histopathological task, although the method does not change. This variance can impair the accuracy of algorithms and histopathologists’ time-to-insight. Investigating this variance can help calibrate stain normalization tasks to reverse this negative potential. With machine learning, this study evaluated the staining variance between different laboratories on three tissue types. We received H&E-stained slides from 66 different laboratories. Each slide contained kidney, skin, and colon tissue samples stained by the method routinely used in each laboratory. The samples were digitized and summarized as red, green, and blue channel histograms. Dimensions were reduced using principal component analysis. The data projected by principal components were inserted into the k-means clustering algorithm and the k-nearest neighbors classifier with the laboratories as the target. The k-means silhouette index indicated that K = 2 clusters had the best separability in all tissue types. The supervised classification result showed laboratory effects and tissue-type bias. Both supervised and unsupervised approaches suggested that tissue type also affected inter-laboratory variance. We suggest tissue type to also be considered upon choosing the staining and color-normalization approach. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | MDPI | |
dc.relation.ispartofseries | Applied Sciences | |
dc.rights | CC BY 4.0 | |
dc.subject.other | HE-värjäys | |
dc.subject.other | hematoksyliini-eosiini-värjäys | |
dc.subject.other | histopatologia | |
dc.subject.other | H&E | |
dc.subject.other | histopathology | |
dc.subject.other | machine learning | |
dc.subject.other | clustering | |
dc.subject.other | rand index | |
dc.subject.other | k-means | |
dc.subject.other | stain normalization | |
dc.title | H&E Multi-Laboratory Staining Variance Exploration with Machine Learning | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202208164130 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Bio- ja ympäristötieteiden laitos | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.laitos | Department of Biological and Environmental Science | en |
dc.contributor.oppiaine | Human and Machine based Intelligence in Learning | fi |
dc.contributor.oppiaine | Computing, Information Technology and Mathematics | fi |
dc.contributor.oppiaine | Laskennallinen tiede | fi |
dc.contributor.oppiaine | Solu- ja molekyylibiologia | fi |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Human and Machine based Intelligence in Learning | en |
dc.contributor.oppiaine | Computing, Information Technology and Mathematics | en |
dc.contributor.oppiaine | Computational Science | en |
dc.contributor.oppiaine | Cell and Molecular Biology | en |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2076-3417 | |
dc.relation.numberinseries | 15 | |
dc.relation.volume | 12 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2022 by the authors. Licensee MDPI, Basel, Switzerland | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | A75000 | |
dc.subject.yso | diagnostiikka | |
dc.subject.yso | koneoppiminen | |
dc.subject.yso | laboratoriotekniikka | |
dc.subject.yso | väriaineet | |
dc.subject.yso | patologia | |
dc.subject.yso | tekoäly | |
dc.subject.yso | kuvantaminen | |
dc.subject.yso | kudokset | |
dc.subject.yso | näytteet | |
dc.subject.yso | histologia | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p416 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p19594 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2176 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7343 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2616 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3532 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p4820 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p17934 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p20287 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.3390/app12157511 | |
dc.relation.funder | Council of Tampere Region | en |
dc.relation.funder | Pirkanmaan liitto | fi |
jyx.fundingprogram | ERDF European Regional Development Fund, React-EU | en |
jyx.fundingprogram | EAKR Euroopan aluekehitysrahasto, React-EU | fi |
jyx.fundinginformation | The work is related to the AI Hub Central Finland project that has received funding from Council of Tampere Region (Decision number: A75000) and European Regional Development Fund React‐EU (2014–2023) and Leverage from the EU 2014–2020. This project has been funded with support from the European Commission. | |
dc.type.okm | A1 | |