Stability estimates for the magnetic Schrödinger operator with partial measurements
Potenciano-Machado, L., Ruiz, A., & Tzou, L. (2022). Stability estimates for the magnetic Schrödinger operator with partial measurements. Journal of Differential Equations, 321, 475-521. https://doi.org/10.1016/j.jde.2022.02.051
Julkaistu sarjassa
Journal of Differential EquationsPäivämäärä
2022Oppiaine
MatematiikkaInversio-ongelmien huippuyksikköMathematicsCentre of Excellence in Inverse ProblemsTekijänoikeudet
© 2022 the Authors
In this article, we study stability estimates when recovering magnetic fields and electric potentials in a simply connected open subset in Rn with n≥3, from measurements on open subsets of its boundary. This inverse problem is associated with a magnetic Schrödinger operator. Our estimates are quantitative versions of the uniqueness results obtained by D. Dos Santos Ferreira, C.E. Kenig, J. Sjöstrand and G. Uhlmann in [13]. The moduli of continuity are of logarithmic type.
Julkaisija
Elsevier BVISSN Hae Julkaisufoorumista
0022-0396Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/146488500
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Increasing stability in the linearized inverse Schrödinger potential problem with power type nonlinearities
Lu, Shuai; Salo, Mikko; Xu, Boxi (IOP Publishing, 2022)We consider increasing stability in the inverse Schrödinger potential problem with power type nonlinearities at a large wavenumber. Two linearization approaches, with respect to small boundary data and small potential ... -
An inverse problem for the fractional Schrödinger equation in a magnetic field
Covi, Giovanni (Institute of Physics, 2020)This paper shows global uniqueness in an inverse problem for a fractional magnetic Schrödinger equation (FMSE): an unknown electromagnetic field in a bounded domain is uniquely determined up to a natural gauge by infinitely ... -
The Calderón problem for the fractional Schrödinger equation with drift
Cekić, Mihajlo; Lin, Yi-Hsuan; Rüland, Angkana (Springer, 2020)We investigate the Calderón problem for the fractional Schrödinger equation with drift, proving that the unknown drift and potential in a bounded domain can be determined simultaneously and uniquely by an infinite number ... -
The Calderón problem for the fractional Schrödinger equation
Ghosh, Tuhin; Salo, Mikko; Uhlmann, Gunther (Mathematical Sciences Publishers, 2020)We show global uniqueness in an inverse problem for the fractional Schrödinger equation: an unknown potential in a bounded domain is uniquely determined by exterior measurements of solutions. We also show global uniqueness ... -
Determining a Random Schrödinger Operator : Both Potential and Source are Random
Li, Jingzhi; Liu, Hongyu; Ma, Shiqi (Springer, 2021)We study an inverse scattering problem associated with a Schrödinger system where both the potential and source terms are random and unknown. The well-posedness of the forward scattering problem is first established in a ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.