Näytä suppeat kuvailutiedot

dc.contributor.advisorRajala, Tapio
dc.contributor.authorMiettinen, Jani
dc.date.accessioned2022-06-01T06:20:00Z
dc.date.available2022-06-01T06:20:00Z
dc.date.issued2022
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/81385
dc.description.abstractTutkielma tarkastelee Banach-avaruuksien vektoriarvoista Bochner-integraalia. Integraali määritellään yksinkertaisille kuvauksille Lebesgue-integraalia ja avaruuden täydellisyyttä käyttäen. Tämän jälkeen tutustutaan vektoriarvoisten joukkokuvausten eli vektorimittojen teoriaan. Lopuksi tutkitaan Banach-avaruuden Radon-Nikodym -ominaisuutta, joka yhdistää vektorimittojen ja Bochner-integraalin teorian sekä vastaa kysymykseen, voidaanko annettu vektorimitta esittää integroituvan kuvauksen Bochner-integraalina. Avaruudet, joilla on tämä ominaisuus omaavat mielenkiintoisia rakenteita sekä topologisesta että geometrisesta näkökulmasta. Myöhempien lukujen osalta on olennaista tuntea Banach-avaruuksien ja Lebesgue-integraaliin liittyvä perusteoria. Ensimmäinen luku käy läpi normiavaruuksien teoriaa painottamalla lineaarikuvauksia ja listaamalla keskeisimmät tulokset, kuten Hahn-Banach -lauseen ja sen seuraukset. Funktionaalianalyyttinen osuus päätetään heikon topologian määritelmään. Viimeinen aliluku käsittelee mittojen, yksinkertaisen kuvausten, Lebesgue-integraalien ja L^p-avaruuksien aihealueet. Toisessa luvussa käsitellään mitallisia kuvauksia ja Bochner-integraalia. Mitalliset kuvaukset ovat niitä kuvauksia, joille integraali on hyvin määritelty ja joille integraali voi ylipäätään olla olemassa. Mitallisuustyyppejä on useampia, joista olennaisimmat ovat mu-mitallisuus ja heikko mitallisuus. Käsitteet liittyvät läheisesti toisiinsa Pettisin mitallisuuslauseen kautta. Tämän jälkeen määritellään Bochner-integraali yksinkertaisten kuvausten integraalien Cauchy-jonon raja-arvona. Teoria alkaa perustuloksista ja myöhemmin nähdään, että integroituvuuteen riittää tarkastella vain reaaliarvoista normikuvausta viittaamatta yksinkertaisiin kuvauksiin. Integraalien keskeisenä tuloksena saadaan suljettuihin lineaarikuvauksiin liittyvä Hillen lause. Lopuksi käsitellään Bochner-L^p-avaruudet ja heikosti mitallisten kuvausten Pettis-integraali. Mittojen käsitettä voidaan tarkastella myös vektoriarvoisille joukkokuvauksille, jolloin saadaan vektorimittojen käsite. Kolmannessa luvussa tutustutaan vektorimittoihin, näiden variaatioihin sekä vektorimittojen Banach-avaruuksiin. Lopuksi tutkitaan Pettis-integraalia vektorimittana. Viimeisessä luvussa käsitellään Radon-Nikodym -ominaisuutta. Jokainen absoluuttisesti jatkuva reaaliarvoinen äärellinen mitta voidaan esittää toisen mitan suhteen integraalina: tämä tulos tunnetaan Radon-Nikodym -lauseena, jolle annetaan todistus. Yleisissä Banach-avaruuksissa voidaan määritellä vastaava asetelma, mutta osoittautuu, että jokaisella avaruudella ei ole tätä esitysominaisuutta. Luvun tavoitteena on näyttää erilaisia ehtoja Radon-Nikodym -ominaisuudelle. Ensimmäisenä aloitetaan L^1-avaruuden operaattoreiden Riesz-esitettävyydestä. Tämän jälkeen siirrytään lommoontuviin (eng. dentable) joukkoihin ja konveksisuuteen. Lopuksi esitetään joitakin Radon-Nikodym -ominaisuuden karakterisointeja, kuten Banach-arvoisten absoluuttisesti jatkuvien kuvausten differentioituvuus.fi
dc.format.extent79
dc.format.mimetypeapplication/pdf
dc.language.isofi
dc.rightsIn Copyrighten
dc.subject.otherBochner-integraali
dc.subject.othervektorimitta
dc.subject.otherRadon-Nikodym -ominaisuus
dc.titleBochner-integraali ja Radon-Nikodym -ominaisuus
dc.typemaster thesis
dc.identifier.urnURN:NBN:fi:jyu-202206013009
dc.type.ontasotPro gradu -tutkielmafi
dc.type.ontasotMaster’s thesisen
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.tiedekuntaFaculty of Sciencesen
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.publicationmasterThesis
dc.contributor.oppiainekoodi4041
dc.subject.ysomatematiikka
dc.subject.ysointegraalilaskenta
dc.subject.ysomittateoria
dc.subject.ysonormiavaruudet
dc.subject.ysofunktionaalianalyysi
dc.format.contentfulltext
dc.rights.urlhttps://rightsstatements.org/page/InC/1.0/
dc.type.okmG2


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright