Lumihiutaleupotukset
Tekijät
Päivämäärä
2022Tässä pro gradu -tutkielmassa tutustutaan lumihiutaleupotuksiin. Päätuloksena todistetaan Assouadin upotuslause, mikä osoittaa lumihiutaleupotusten olemassaolon. Esimerkkinä lumihiutaleupotuksesta käsitellään von Kochin lumihiutaletta.
Tutkielman alussa määritellään keskeiset käsitteet, joita ovat muun muassa metriset avaruudet, bi-Lipschitz-kuvaus, täydellisyys sekä kompaktius. Lisäksi todistetaan
tuloksia, joita tarvitaan myöhemmin tutkielman muiden lemmojen ja lauseiden todistuksissa.
Toisessa luvussa määritellään ensin metrisen avaruuden tuplaavuus, lumihiutalemetriikka ja metrisen avaruuden lumihiutaleversio. Lisäksi osoitetaan lumihiutaleversion olevan metrinen avaruus. Tämän jälkeen todistetaan Assouadin upotuslause:
Olkoon (X, d) tuplaava metrinen avaruus. Tällöin sen jokainen lumihiutaleversio
(X, d^α) voidaan bi-Lipschitz upottaa johonkin Euklidiseen avaruuteen R^N .
Tutkielman kolmannessa luvussa käsitellään von Kochin lumihiutalekäyrää. Jotta
käyrä voidaan antaa iteroidun funktiojärjestelmän kiintopisteenä, määritellään ensin kutistavat kuvaukset ja todistetaan Banachin kiintopistelause. Lisäksi määritellään Hausdorff-etäisyys kompakteille epätyhjille joukoille ja keskeisenä tuloksena osoitetaan, että jokaisella iteroidulla funktiojärjestelmällä on olemassa yksikäsitteinen kiintopiste. Lopuksi osoitetaan, että von Kochin lumihiutalekäyrä on välin [0, 1] lumihiutaleupotus.
...
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Pro gradu -tutkielmat [29743]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On the quasi-isometric and bi-Lipschitz classification of 3D Riemannian Lie groups
Fässler, Katrin; Le Donne, Enrico (Springer, 2021)This note is concerned with the geometric classification of connected Lie groups of dimension three or less, endowed with left-invariant Riemannian metrics. On the one hand, assembling results from the literature, we give ... -
Lectures on Lipschitz analysis
Heinonen, Juha (University of Jyväskylä, 2005) -
Visuaalinen tangentti lukion pitkässä matematiikassa
Sauramäki, Arja (2017)Opinnäytetyössä selvitellään lukion pitkän matematiikan opiskelijoiden käsityksiä visuaalisesta tangenttisuorasta (lyh. tangentista). Työ sisältää tietokoosteen tutkielman aihepiirin visuaalisesta tangentista. Lukio-opiskelijoiden ... -
Toisen asteen imaginääristen lukukuntien perusalueet hyperbolisessa avaruudessa
Toivonen, Jaakko (2024)Tässä tutkielmassa käsitellään toisen asteen imaginääristen lukukuntien luokkaluvun yhteyttä kunnan kokonaislukurenkaan virittämän hyperbolisen avaruuden isometrioiden ryhmän PSL2(OK) eli Bianchin ryhmän muodostamaan ... -
Hyperbolisen geometrian historiaa
Ruokaismäki, Joni (2024)Tämän pro gradu -tutkielman tarkoituksena on tutustua yleisesti hyperbolisen geometrian historiaan ja siihen, miten hyperbolisesta geometriasta tuli tunnustettu osa nykypäivän matematiikkaa. Tutkielma keskittyy ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.