Näytä suppeat kuvailutiedot

dc.contributor.authorLu, Shuai
dc.contributor.authorSalo, Mikko
dc.contributor.authorXu, Boxi
dc.date.accessioned2022-04-06T04:49:32Z
dc.date.available2022-04-06T04:49:32Z
dc.date.issued2022
dc.identifier.citationLu, S., Salo, M., & Xu, B. (2022). Increasing stability in the linearized inverse Schrödinger potential problem with power type nonlinearities. <i>Inverse Problems</i>, <i>38</i>(6), Article 065009. <a href="https://doi.org/10.1088/1361-6420/ac637a" target="_blank">https://doi.org/10.1088/1361-6420/ac637a</a>
dc.identifier.otherCONVID_117587718
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/80493
dc.description.abstractWe consider increasing stability in the inverse Schrödinger potential problem with power type nonlinearities at a large wavenumber. Two linearization approaches, with respect to small boundary data and small potential function, are proposed and their performance on the inverse Schrödinger potential problem is investigated. It can be observed that higher order linearization for small boundary data can provide an increasing stability for an arbitrary power type nonlinearity term if the wavenumber is chosen large. Meanwhile, linearization with respect to the potential function leads to increasing stability for a quadratic nonlinearity term, which highlights the advantage of nonlinearity in solving the inverse Schrödinger potential problem. Noticing that both linearization approaches can be numerically approximated, we provide several reconstruction algorithms for the quadratic and general power type nonlinearity terms, where one of these algorithms is designed based on boundary measurements of multiple wavenumbers. Several numerical examples shed light on the efficiency of our proposed algorithms.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherIOP Publishing
dc.relation.ispartofseriesInverse Problems
dc.rightsCC BY-NC-ND 3.0
dc.subject.otherincreasing stability
dc.subject.otherinverse Schrödinger potential problem
dc.subject.otherpower type nonlinearities
dc.subject.otherreconstruction algorithms
dc.titleIncreasing stability in the linearized inverse Schrödinger potential problem with power type nonlinearities
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202204062175
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineInversio-ongelmien huippuyksikköfi
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineCentre of Excellence in Inverse Problemsen
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0266-5611
dc.relation.numberinseries6
dc.relation.volume38
dc.type.versionacceptedVersion
dc.rights.copyright© 2022 IOP Publishing Ltd.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber770924
dc.relation.grantnumber770924
dc.relation.grantnumber284715 HY
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/770924/EU//IPTheoryUnified
dc.subject.ysoinversio-ongelmat
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p27912
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/3.0/
dc.relation.doi10.1088/1361-6420/ac637a
dc.relation.funderEuropean Commissionen
dc.relation.funderResearch Council of Finlanden
dc.relation.funderEuroopan komissiofi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramERC Consolidator Granten
jyx.fundingprogramCentre of Excellence, AoFen
jyx.fundingprogramERC Consolidator Grantfi
jyx.fundingprogramHuippuyksikkörahoitus, SAfi
jyx.fundinginformationM Salo is supported by the Academy of Finland (Finnish Centre of Excellence in Inverse Modelling and Imaging, Grant 284715) and by the European Research Council under Horizon 2020 (ERC CoG 770924). B Xu is supported by NSFC (No. 12171301 and No. 11801351).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 3.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 3.0