Partial Data Problems and Unique Continuation in Scalar and Vector Field Tomography
Ilmavirta, J., & Mönkkönen, K. (2022). Partial Data Problems and Unique Continuation in Scalar and Vector Field Tomography. Journal of Fourier Analysis and Applications, 28(2), Article 34. https://doi.org/10.1007/s00041-022-09907-9
Published in
Journal of Fourier Analysis and ApplicationsDate
2022Discipline
MatematiikkaInversio-ongelmien huippuyksikköMathematicsCentre of Excellence in Inverse ProblemsCopyright
© 2022 the Authors
We prove that if P(D) is some constant coefficient partial differential operator and f is a scalar field such that P(D)f vanishes in a given open set, then the integrals of f over all lines intersecting that open set determine the scalar field uniquely everywhere. This is done by proving a unique continuation property of fractional Laplacians which implies uniqueness for the partial data problem. We also apply our results to partial data problems of vector fields.
Publisher
BirkhäuserISSN Search the Publication Forum
1069-5869Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/117506736
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Centre of Excellence, AoF; Academy Project, AoFAdditional information about funding
J.I. was supported by Academy of Finland (grants 332890 and 336254). K.M. was supported by Academy of Finland (Centre of Excellence in Inverse Modelling and Imaging, grant numbers 284715 and 309963). Open Access funding provided by University of Jyväskylä (JYU).License
Related items
Showing items with similar title or keywords.
-
Unique Continuation Results for Certain Generalized Ray Transforms of Symmetric Tensor Fields
Agrawal, Divyansh; Krishnan, Venkateswaran P.; Sahoo, Suman Kumar (Springer Science and Business Media LLC, 2022)Let Im denote the Euclidean ray transform acting on compactly supported symmetric m-tensor field distributions f, and I∗m be its formal L2 adjoint. We study a unique continuation result for the operator Nm=I∗mIm. More ... -
Refined instability estimates for some inverse problems
Kow, Pu-Zhao; Wang, Jenn-Nan (American Institute of Mathematical Sciences (AIMS), 2022)Many inverse problems are known to be ill-posed. The ill-posedness can be manifested by an instability estimate of exponential type, first derived by Mandache [29]. In this work, based on Mandache's idea, we refine the ... -
Calderón's problem for p-laplace type equations
Brander, Tommi (University of Jyväskylä, 2016)We investigate a generalization of Calderón’s problem of recovering the conductivity coefficient in a conductivity equation from boundary measurements. As a model equation we consider the p-conductivity equation div σ ... -
On some partial data Calderón type problems with mixed boundary conditions
Covi, Giovanni; Rüland, Angkana (Elsevier, 2021)In this article we consider the simultaneous recovery of bulk and boundary potentials in (degenerate) elliptic equations modelling (degenerate) conducting media with inaccessible boundaries. This connects local and nonlocal ... -
Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations
Lassas, Matti; Liimatainen, Tony; Lin, Yi-Hsuan; Salo, Mikko (European Mathematical Society Publishing House, 2021)We study various partial data inverse boundary value problems for the semilinear elliptic equation Δu + a(x, u) = 0 in a domain in Rn by using the higher order linearization technique introduced by Lassas– Liimatainen–Lin–Salo ...