Näytä suppeat kuvailutiedot

dc.contributor.authorIlmavirta, Joonas
dc.contributor.authorMönkkönen, Keijo
dc.date.accessioned2022-04-04T11:26:58Z
dc.date.available2022-04-04T11:26:58Z
dc.date.issued2022
dc.identifier.citationIlmavirta, J., & Mönkkönen, K. (2022). Partial Data Problems and Unique Continuation in Scalar and Vector Field Tomography. <i>Journal of Fourier Analysis and Applications</i>, <i>28</i>(2), Article 34. <a href="https://doi.org/10.1007/s00041-022-09907-9" target="_blank">https://doi.org/10.1007/s00041-022-09907-9</a>
dc.identifier.otherCONVID_117506736
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/80472
dc.description.abstractWe prove that if P(D) is some constant coefficient partial differential operator and f is a scalar field such that P(D)f vanishes in a given open set, then the integrals of f over all lines intersecting that open set determine the scalar field uniquely everywhere. This is done by proving a unique continuation property of fractional Laplacians which implies uniqueness for the partial data problem. We also apply our results to partial data problems of vector fields.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherBirkhäuser
dc.relation.ispartofseriesJournal of Fourier Analysis and Applications
dc.rightsCC BY 4.0
dc.subject.otherinverse problems
dc.subject.otherX-ray tomography
dc.subject.othervector field tomography
dc.subject.otherregion of interest tomography
dc.subject.otherunique continuation
dc.titlePartial Data Problems and Unique Continuation in Scalar and Vector Field Tomography
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202204042151
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineInversio-ongelmien huippuyksikköfi
dc.contributor.oppiaineMathematicsen
dc.contributor.oppiaineCentre of Excellence in Inverse Problemsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1069-5869
dc.relation.numberinseries2
dc.relation.volume28
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 the Authors
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber284715 HY
dc.relation.grantnumber309963
dc.subject.ysotomografia
dc.subject.ysoinversio-ongelmat
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p17798
jyx.subject.urihttp://www.yso.fi/onto/yso/p27912
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s00041-022-09907-9
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramCentre of Excellence, AoFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramHuippuyksikkörahoitus, SAfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationJ.I. was supported by Academy of Finland (grants 332890 and 336254). K.M. was supported by Academy of Finland (Centre of Excellence in Inverse Modelling and Imaging, grant numbers 284715 and 309963). Open Access funding provided by University of Jyväskylä (JYU).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0