Testing the Sobolev property with a single test plan
Pasqualetto, E. (2022). Testing the Sobolev property with a single test plan. Studia Mathematica, 264, 149-179. https://doi.org/10.4064/sm200630-24-8
Julkaistu sarjassa
Studia MathematicaTekijät
Päivämäärä
2022Tekijänoikeudet
© Instytut Matematyczny PAN, 2022
We prove that on an arbitrary metric measure space the following property holds: a single test plan can be used to recover the minimal weak upper gradient of any Sobolev function. This means that, in order to identify which are the exceptional curves in the weak upper gradient inequality, it suffices to consider the negligible sets of a suitable Borel measure on curves, rather than the ones of the p-modulus. Moreover, on RCD spaces we can improve our result, showing that the test plan can also be chosen to be concentrated on an equi-Lipschitz family of curves.
Julkaisija
Institute of Mathematics, Polish Academy of SciencesISSN Hae Julkaisufoorumista
0039-3223Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/104559483
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Huippuyksikkörahoitus, SA; Akatemiahanke, SA; Akatemiatutkija, SA; Akatemiatutkijan tutkimuskulut, SALisätietoja rahoituksesta
This research has been supported by the Academy of Finland, projects 274372, 307333, 312488, and 314789.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Universal Infinitesimal Hilbertianity of Sub-Riemannian Manifolds
Le Donne, Enrico; Lučić, Danka; Pasqualetto, Enrico (Springer, 2023)We prove that sub-Riemannian manifolds are infinitesimally Hilbertian (i.e., the associated Sobolev space is Hilbert) when equipped with an arbitrary Radon measure. The result follows from an embedding of metric derivations ... -
Characterisation of upper gradients on the weighted Euclidean space and applications
Lučić, Danka; Pasqualetto, Enrico; Rajala, Tapio (Springer, 2021)In the context of Euclidean spaces equipped with an arbitrary Radon measure, we prove the equivalence among several different notions of Sobolev space present in the literature and we characterise the minimal weak upper ... -
A density result on Orlicz-Sobolev spaces in the plane
Ortiz, Walter A.; Rajala, Tapio (Elsevier, 2021)We show the density of smooth Sobolev functions Wk,∞(Ω)∩C∞(Ω) in the Orlicz-Sobolev spaces Lk,Ψ(Ω) for bounded simply connected planar domains Ω and doubling Young functions Ψ. -
Sobolev homeomorphic extensions
Koski, Aleksis; Onninen, Jani (European Mathematical Society, 2021)Let X and Y be ℓ-connected Jordan domains, ℓ∈N, with rectifiable boundaries in the complex plane. We prove that any boundary homeomorphism φ:∂X→∂Y admits a Sobolev homeomorphic extension h:X¯→Y¯ in W1,1(X,C). If instead X ... -
Bi-Sobolev Extensions
Koski, Aleksis; Onninen, Jani (Springer, 2023)We give a full characterization of circle homeomorphisms which admit a homeomorphic extension to the unit disk with finite bi-Sobolev norm. As a special case, a bi-conformal variant of the famous Beurling–Ahlfors extension ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.