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Testing the Sobolev property with a single test plan

by

Enrico Pasqualetto (Jyväskylä)

Abstract. We prove that on an arbitrary metric measure space the following property
holds: a single test plan can be used to recover the minimal weak upper gradient of any
Sobolev function. This means that, in order to identify which are the exceptional curves in
the weak upper gradient inequality, it suffices to consider the negligible sets of a suitable
Borel measure on curves, rather than the ones of the p-modulus. Moreover, on RCD spaces
we can improve our result, showing that the test plan can also be chosen to be concentrated
on an equi-Lipschitz family of curves.

Introduction. Throughout the past two decades, the classical theory of
first-order Sobolev spaces has been successfully generalised to the abstract
setting of metric measure spaces. Two strategies played a central role in the
development of this subject: the relaxation procedure based on the notion
of upper gradient (introduced by J. Cheeger [7]) and the analysis of the be-
haviour along curves (proposed by N. Shanmugalingam [22]), later revisited
by L. Ambrosio, N. Gigli, and G. Savaré [4, 5]. As eventually proven in [4],
all these approaches are fully equivalent.

Let (X, d) be a (complete and separable) metric space endowed with
a (boundedly finite) Borel measure m. Let p ∈ (1,∞) be fixed. Then the
p-Sobolev space W 1,p(X) is a Banach space whose elements f are associated
with a minimal object |Df |p ∈ Lp(m), which is called the minimal generalised
p-upper gradient [7], the minimal p-relaxed slope [4], or the minimal p-weak
upper gradient [22, 5], and is the smallest p-integrable function that bounds
from above the (modulus of the) variation of f . For the purposes of this
paper, it is convenient to begin with the notion of relaxed slope introduced
by Ambrosio–Gigli–Savaré [4], which is a variant of the original Cheeger’s
approach: the function |Df |p can be characterised as the minimal possible
strong Lp(m)-limit of lip(fn) among all sequences (fn)n ⊆ LIPbs(X) with
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limn ∥f−fn∥Lp(m) = 0, where lip(fn) stands for the slope of fn (see (1.1)). In
duality with this ‘Eulerian’ relaxation procedure, it is possible—from a more
‘Lagrangian’ viewpoint—to identify |Df |p by looking at the behaviour of f
along rectifiable curves. Namely, |Df |p is the minimal function G ∈ Lp(m)
such that for almost every absolutely continuous curve γ the function f ◦ γ
is absolutely continuous and

(⋆)
∣∣∣∣ ddtf(γt)

∣∣∣∣ ≤ G(γt)|γ̇t| for L1-a.e. t ∈ [0, 1].

There are different ways to detect the negligible families of curves that are
excluded from the weak upper gradient condition (⋆). In Shanmugalingam’s
approach, the exceptional curves are measured with respect to the p-modulus
Modp, which is an outer measure on paths that plays a crucial role in function
theory [18]. Ambrosio, Gigli, and Savaré proposed the alternative notion of test
plan: writing q ∈ (1,∞) for the conjugate exponent of p, they define a q-test
plan on (X, d,m) as a Borel probability measure π on C([0, 1],X) that is con-
centrated on the set AC([0, 1],X) of absolutely continuous curves and satisfies

∃C > 0 : (et)#π ≤ Cm ∀t ∈ [0, 1],
� 1�

0

|γ̇t|q dtdπ(γ) < +∞,

where the evaluation map et is given by et(γ) := γt. The first condition is
a compression estimate—which grants that the plan does not concentrate
mass too much at any time—while the second one is an integral bound on
the speed of the curves selected by the plan. It is then possible to express
|Df |p as the minimal G ∈ Lp(m) such that for every q-test plan π the
inequality (⋆) holds for π-a.e. γ.

There are two main differences between the p-modulus and a q-test plan:
firstly, the former is an outer measure, while the latter is a σ-additive Borel
measure (but a priori one has to consider possibly uncountably many test
plans to identify the minimal weak upper gradient); secondly, in the defini-
tion of test plan the parametrisation of the curves involved plays an essential
role, while the modulus is parametrisation-invariant. The duality between
modulus and plans has been studied in [3].

The aim of this paper is to show that we can find a single q-test plan
πq—which we shall call the master test plan—that is sufficient to recover the
minimal weak upper gradient of any given Sobolev function. More precisely,
for every f ∈ W 1,p(X), |Df |p is the minimal G ∈ Lp(m) such that (⋆) holds
for πq-a.e. γ. This result will be achieved on arbitrary metric measure spaces.
Let us briefly outline the ideas behind the proof:
(a) The main tool we use is the plan representing the gradient of a Sobolev

function, a concept introduced by Gigli in [11]. This means, roughly
speaking, that the ‘derivative’ at time t = 0 of the test plan coincides
with the gradient of the given function.
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(b) In lack of a linear structure underlying the ambient space X, we work
within the framework of the abstract tensor calculus built by Gigli [12],
which relies upon the theory of normed modules. This supplies the func-
tional-analytic tools we will need.

(c) We will further investigate the plans representing a gradient and fit
them in the setting of the normed modules calculus, which was still not
available at the time of [11]. More precisely, we prove—in a suitable
sense—that if a test plan π represents the gradient of f ∈ W 1,p(X),
then for every g ∈ W 1,p(X) and π-a.e. γ the derivative at time t = 0
of g ◦ γ coincides with dg(∇f)(γ0). See Proposition 2.3 for the precise
statement.

(d) Given a sequence (fn)n dense ‘in energy’ in W 1,p(X) and writing πn for
the plan representing the gradient of fn, we show—by using the results
we mentioned in item (c)—that the sequence (πn)n of q-test plans is
sufficient to identify the minimal weak upper gradient of each Sobolev
function. Finally, by suitably combining the measures πn we obtain the
desired master test plan πq. See Theorem 2.6 for the details.

The weak upper gradient condition (⋆) can be additionally used (when con-
sidered with respect to the modulus, or to the totality of test plans) to detect
which functions are Sobolev. Currently, it is not known whether the same
holds for the master test plan; cf. Problem 2.7.

In the last part of the paper, we improve our existence result of master
test plans in the case in which the metric measure space (X, d,m) satisfies a
lower Ricci curvature bound. More specifically, we consider the so-called RCD
spaces, which are infinitesimally Hilbertian metric measure spaces (i.e., the
associated 2-Sobolev space is Hilbert [11]) fulfilling the celebrated curvature-
dimension condition introduced by Lott–Sturm–Villani [20, 23, 24]. In this
framework, we show that it is possible to construct an ∞-test plan π∞ (i.e.,
a test plan concentrated on an equi-Lipschitz family of curves) which acts
as a master q-test plan for every exponent q ∈ (1,∞); cf. Theorem 3.4. This
sort of property has to do with the dependence on the exponent p of minimal
p-weak upper gradients; see Remark 3.6 for a more detailed discussion. To
prove Theorem 3.4, instead of plans representing the gradient we employ the
theory of regular Lagrangian flows, available on RCD spaces thanks to [6].

1. Preliminaries

1.1. Sobolev calculus on metric measure spaces. For the purposes
of this article, by a metric measure space we mean a triple (X, d,m), where

(X, d) is a complete and separable metric space,
m ≥ 0 is a boundedly finite Borel measure on (X, d).
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For the sake of brevity, we will use the shorthand notation L1 to indicate
the restriction of the 1-dimensional Lebesgue measure L1 to the real interval
[0, 1], that is,

L1 := L1|[0,1].
The space C([0, 1],X) of continuous curves in X is a complete and separ-
able metric space when equipped with the supremum distance d∞(γ, σ) :=
max{d(γt, σt) | t ∈ [0, 1]}. The evaluation map e : C([0, 1],X)× [0, 1] → X is
defined as e(γ, t) := γt for every γ ∈ C([0, 1],X) and t ∈ [0, 1], while for any
t ∈ [0, 1] we denote by et : C([0, 1],X) → X the evaluation map at time t,
i.e., we set et(γ) := e(γ, t) for all γ ∈ C([0, 1],X). Given any s, t ∈ [0, 1]
with s < t we define the restriction map restrts : C([0, 1],X) → C([0, 1],X) as
restrts(γ)r := γrt+(1−r)s. Observe that e, et, and restrts are continuous maps.

A curve γ ∈ C([0, 1],X) is said to be absolutely continuous provided
there exists g ∈ L1(0, 1) such that d(γt, γs) ≤

	t
s g(r) dr for all s, t ∈ [0, 1]

with s < t. In this case, the limit |γ̇t| := limh→0 d(γt+h, γt)/|h| exists at
L1-a.e. t ∈ [0, 1] and defines a function in L1(0, 1), which is the minimal
one (in the a.e. sense) satisfying the inequality in the absolute continuity
condition. The function |γ̇|, which is declared to be 0 at those t ∈ [0, 1]
where the above limit does not exist, is called the metric speed of γ. We
denote by AC([0, 1],X) the family of all absolutely continuous curves on X.
Given any q ∈ (1,∞), we define the family of q-absolutely continuous curves
as

ACq([0, 1],X) := {γ ∈ AC([0, 1],X) | |γ̇| ∈ Lq(0, 1)}.

The space of all real-valued Lipschitz functions on (X, d) having bounded
support is denoted by LIPbs(X). Given any function f ∈ LIPbs(X), we define
its slope lip(f) : X → [0,+∞) as

(1.1) lip(f)(x) := lim
y→x

|f(x)− f(y)|
d(x, y)

if x ∈ X is an accumulation point,

and lip(f)(x) := 0 otherwise. Furthermore, for any q ∈ (1,∞) we denote
by Pq(X) the set of all Borel probability measures µ on (X, d) having finite
qth moment, i.e., satisfying�

dq(·, x̄) dµ < +∞ for some (thus any) point x̄ ∈ X.

In what follows, we will often consider the integral (in the sense of
Bochner [9]) of maps of the form [0, 1] ∋ t 7→ Φt ∈ B, where B is a sep-
arable Banach space; more precisely, B will always be an Lp-space, for some
exponent p ∈ [1,∞). The fact that the maps Φ : [0, 1] → B we will consider
are strongly Borel follows by standard arguments, thus we will not insist fur-
ther on measurability issues. Let us just recall that if a map Φ : [0, 1] → Lp(µ)

is Bochner integrable, then (
	1
0 Φt dt)(x) =

	1
0 Φt(x) dt for µ-a.e. x ∈ X.
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Remark 1.1. Let (X, d,m) be a metric measure space. Fix any exponent
q ∈ (1,∞). Then there exists a measure m̃ ∈ Pq(X) such that m ≪ m̃ ≤ Cm
for some constant C > 0.

In order to prove this, fix any point x̄ ∈ X. Given that (X, d) is separable,
we can find a sequence (xk)k ⊆ X such that X =

⋃
k∈NB1(xk). Recall that

m(B1(xk)) < +∞ for all k ∈ N. We define A1 := B1(x1) and Ak := B1(xk) \
(A1 ∪ · · · ∪Ak−1) for every k ≥ 2. Let us put

µ :=
∞∑
k=1

m|Ak

2k(d(xk, x̄) + 1)q max{m(Ak), 1}
, m̃ :=

µ

µ(X)
.

Then µ is a Borel measure on X satisfying µ(X) ≤
∑∞

k=1 2
−k = 1, whence

m̃ is a (well-defined) Borel probability measure on X. If a Borel set N ⊆ X
satisfies µ(N) = 0, then m(N) =

∑∞
k=1m(N ∩ Ak) = 0, thus showing that

m ≪ m̃. Moreover, observe that µ ≤
∑∞

k=1 2
−km|Ak

≤ m and accordingly
m̃ ≤ µ(X)−1m. Finally, since d(·, x̄) ≤ d(xk, x̄) + 1 on Ak for any k ∈ N, we
conclude that
�
dq(·, x̄) dm̃ =

1

µ(X)

∞∑
k=1

1

2k max{m(Ak), 1}

�

Ak

(
d(·, x̄)

d(xk, x̄) + 1

)q

dm ≤ 1

µ(X)
,

thus proving that the measure m̃ has finite qth moment.

1.1.1. Definition of Sobolev space. Let us recall the notion of p-Sobolev
space, based upon the relaxation of the slope, proposed by Ambrosio–Gigli–
Savaré [4] as a variant of Cheeger’s approach [7]. Other equivalent definitions
will be discussed in Sections 1.2 and 1.3.

Definition 1.2 (Sobolev space [4]). Let (X, d,m) be a metric measure
space and p ∈ (1,∞). Then a function f ∈ Lp(m) belongs to the p-Sobolev
space W 1,p(X) provided there exists a sequence (fn)n ⊆ LIPbs(X) such that
fn → f in Lp(m) and

lim
n→∞

�
lipp(fn) dm < +∞.

The Sobolev space W 1,p(X) is a Banach space if endowed with the norm

∥f∥W 1,p(X) := (∥f∥pLp(m) + pECh,p(f))
1/p for every f ∈ W 1,p(X),

where the Cheeger p-energy ECh,p is given by

ECh,p(f) := inf
(fn)n

lim
n→∞

1

p

�
lipp(fn) dm,

with the infimum taken over all sequences (fn)n ⊆ LIPbs(X) such that
fn → f in Lp(m). We observe that for every f ∈ W 1,p(X) there exists a
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unique function |Df |p ∈ Lp(m) such that

ECh,p(f) =
1

p

�
|Df |pp dm.

The function |Df |p is called the minimal p-relaxed slope of f .

Remark 1.3. The minimal p-relaxed slope might depend on the expo-
nent p. More precisely, if p, p′ ∈ (1,∞) and f ∈ W 1,p(X)∩W 1,p′(X), then it
might happen that |Df |p ̸= |Df |p′ . Some examples of spaces in which this
phenomenon occurs can be found in [8].

Remark 1.4. The reflexivity properties of the Sobolev spaces are inves-
tigated in [2], where the authors proved, e.g., that W 1,p(X) is reflexive as
soon as the underlying space (X, d,m) is metrically doubling. Moreover, the
reflexivity of W 1,p(X) implies its separability. An example of non-reflexive
(and non-separable) Sobolev space was also constructed in [2]. To the best
of our knowledge, no example of separable non-reflexive Sobolev space is
currently available.

1.1.2. The theory of normed modules. We need to recall a few basic
notions in the theory of normed modules introduced in [12, 13]. Given a
metric measure space (X, d,m) and an exponent p ∈ (1,∞), we say that M
is an Lp(m)-normed L∞(m)-module if it is a module over the ring L∞(m)
and it is equipped with a pointwise norm | · | : M → Lp(m) satisfying

|v| ≥ 0 for every v ∈ M , with |v| = 0 if and only if v = 0,

|f · v| = |f | |v| for every v ∈ M and f ∈ L∞(m),

|v + w| ≤ |v|+ |w| for all v, w ∈ M ,

where equalities and inequalities are understood in the m-a.e. sense. More-
over, we require the norm ∥v∥M := ∥|v|∥Lp(m) to be complete, whence M
has a Banach space structure.

The dual of M is given by the space M ∗ of L∞(m)-linear continuous
maps T : M → L1(m). Choosing q ∈ (1,∞) so that 1/p + 1/q = 1, we see
that M ∗ is an Lq(m)-normed L∞(m)-module if endowed with the following
pointwise norm operator:

|T | := ess sup{|T (v)| | v ∈ M , |v| ≤ 1 m-a.e.} ∈ Lq(m) for all T ∈ M ∗.

The link between the Sobolev calculus and the theory of normed modules
is represented by the cotangent module Lp(T ∗X). It is an Lp(m)-normed
L∞(m)-module that comes with a linear differential operator dp : W 1,p(X) →
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Lp(T ∗X) and is characterised by these two properties:

|dpf | = |Df |p m-a.e. for every f ∈ W 1,p(X),{ n∑
i=1

gi · dpfi
∣∣∣ (gi)i ⊆ L∞(m), (fi)i ⊆ W 1,p(X)

}
is dense in Lp(T ∗X).

The existence of the cotangent module when p = 2 is proven in [12], while
the case p ̸= 2 is treated in [15]. The dual Lq(TX) of the space Lp(T ∗X) is
called the tangent module.

For any Lp(m)-normed L∞(m)-module M , we define Dual : M → 2M ∗

as

(1.2) Dual(v) := {ω ∈ M ∗ | ω(v) = |v|p = |ω|q m-a.e.} for all v ∈ M .

We notice that Dual(v) ̸= ∅ for every v ∈ M , as a consequence of the
Hahn–Banach theorem.

Another important construction is that of pullback module. Consider met-
ric measure spaces (X, dX,mX) and (Y, dY,mY). Let φ : X → Y be a map
of bounded compression, that is, a Borel map satisfying φ#mX ≤ CmY for
some constant C > 0. Then for any Lp(mY)-normed L∞(mY)-module M
there exist a unique Lp(mX)-normed L∞(mX)-module φ∗M and a unique
linear map φ∗ : M → φ∗M such that

|φ∗v| = |v| ◦ φ mX-a.e. for every v ∈ M ,{ n∑
i=1

fi · φ∗vi

∣∣∣ (fi)ni=1 ⊆ L∞(mX), (vi)
n
i=1 ⊆ M

}
is dense in φ∗M .

1.1.3. Infinitesimal strict convexity. Let (X, d,m) be a metric measure
space. Let p, q ∈ (1,∞) satisfy 1/p + 1/q = 1. Following [11], we say that
(X, d,m) is q-infinitesimally strictly convex provided for any functions f, g ∈
W 1,p(X) we have

(1.3) 1{|Df |p>0} ess sup
ε<0

|D(f + εg)|pp − |Df |pp
pε|Df |p−2

p

= 1{|Df |p>0}ess inf
ε>0

|D(f + εg)|pp − |Df |pp
pε|Df |p−2

p

m-a.e.

By arguing as in [12, Proposition 2.3.8] or [16, Proposition 4.3.1], one
can check that (X, d,m) is q-infinitesimally strictly convex if and only if
Dual(dpf) is a singleton for every f ∈ W 1,p(X). In this case, writing ∇pf ∈
Lq(TX) for the unique element of Dual(dpf), we see that dpg(∇pf) coincides
m-a.e. with the function appearing in (1.3) for any choice of f, g ∈ W 1,p(X).
We say that ∇pf is the p-gradient of the function f . Observe that ‘p’ refers
to the fact that f belongs to the p-Sobolev space, but the function |∇pf | is
actually q-integrable.
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1.1.4. Infinitesimal Hilbertianity. Let (X, d,m) be a metric measure space.
An L2(m)-normed L∞(m)-module M is said to be a Hilbert module provided
the parallelogram rule holds:

(1.4) |v + w|2 + |v − w|2 = 2|v|2 + 2|w|2 m-a.e. for all v, w ∈ M .

The condition in (1.4) is equivalent to requiring that M is Hilbert when viewed
as a Banach space. The pointwise scalar product ⟨·, ·⟩ : M × M → L1(m) is
then defined as follows:

⟨v, w⟩ := |v + w|2 − |v|2 − |w|2

2
m-a.e. for all v, w ∈ M .

It can be straightforwardly checked that the map ⟨·, ·⟩ is L∞(m)-bilinear and
continuous.

Remark 1.5. Consider a L2(m)-normed L∞(m)-module M and the map
Dual : M → 2M ∗ as in (1.2). Then M is a Hilbert module if and only if Dual is
single-valued and the unique element of Dual(v) linearly depends on v ∈ M .
The map associating to every v ∈ M the unique element RM (v) ∈ M ∗ of
Dual(v) is called the Riesz isomorphism of M . Moreover, RM : M → M ∗ is
a linear isomorphism that preserves the pointwise norm. The above claims
can be proven by arguing as in [16, Exercise 4.2.11].

A metric measure space (X, d,m) is said to be infinitesimally Hilbertian
[11] provided the 2-Sobolev space W 1,2(X) is a Hilbert space, or equiva-
lently the cotangent module L2(T ∗X) is a Hilbert module. Moreover, as
proven in [12, Proposition 2.3.17], (X, d,m) is infinitesimally Hilbertian if
and only if it is 2-infinitesimally strictly convex and the 2-gradient operator
∇2 : W

1,2(X) → L2(TX) is linear. Let us also observe that

∇2f = RL2(T ∗X)(d2f) for every f ∈ W 1,2(X).

1.2. Modulus and Newtonian space. The notion of Sobolev space
that we described in Section 1.1 corresponds, in the smooth framework, to
the approach via approximation by smooth functions. Another viewpoint on
weakly differentiable functions in the Euclidean space is the one introduced
by B. Levi [19], which consists in checking the behaviour of functions along
curves. This approach was further refined by B. Fuglede [10], who made it
frame-independent by using the potential-theoretic notion of modulus. Later
on, the theory was extended by N. Shanmugalingam [22] to the setting of
metric measure spaces, by introducing the so-called Newtonian space, whose
definition builds upon the notion of upper gradient introduced by J. Heinonen
and P. Koskela [17].

Let (X, d,m) be a metric measure space. Given an exponent p ∈ (1,∞)
and any family Γ ⊆ AC([0, 1],X) of non-constant curves, we define the
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p-modulus of Γ as
Modp(Γ ) := inf

ρ

�
ρp dm,

where the infimum is taken over all Borel functions ρ : X → [0,+∞] such
that

	1
0 ρ(γt)|γ̇t| dt ≥ 1 for every γ ∈ Γ . Note that Modp is an outer measure.

Typically, it is defined on all (non-parametric) curves, but here we prefer the
above formulation since it better fits our approach. A property is said to hold
Modp-almost everywhere provided it is satisfied by every γ in some set Γ
of curves whose complement is Modp-negligible. Given two Borel functions
f̄ : X → R and G : X → [0,+∞] with G ∈ Lp(m), we say that G is a
p-weak upper gradient of f̄ if for Modp-a.e. γ the function f̄ ◦ γ is absolutely
continuous and

∣∣ d
dt f̄(γt)

∣∣ ≤ G(γt)|γ̇t| for L1-a.e. t ∈ [0, 1].

Definition 1.6 (Newtonian space [22]). Let (X, d,m) be a metric mea-
sure space. Fix any exponent p ∈ (1,∞). Then the Newtonian space N1,p(X)
is the family of all f ∈ Lp(m) that admit a Borel representative f̄ : X → R
having a p-weak upper gradient G ∈ Lp(m).

The Newtonian space can be made into a Banach space: given any f ∈
N1,p(X), we define

∥f∥N1,p(X) :=
(
∥f∥pLp(m) + inf

G∈Dp[f ]
∥G∥pLp(m)

)1/p
,

where Dp[f ] stands for the family of all Borel functions G : X → [0,+∞]
that are p-weak upper gradients of some Borel version of f . It turns out that
∥ · ∥N1,p(X) is a complete norm on N1,p(X). There exists a unique function
Gf,p ∈ Dp[f ] having minimal Lp(m)-norm among all elements of Dp[f ], and
it is minimal also in the m-a.e. sense. We have:

Proposition 1.7. Let (X, d,m) be a metric measure space. Let p ∈
(1,∞). Then W 1,p(X) ⊆ N1,p(X), and Gf,p ≤ |Df |p holds m-a.e. for ev-
ery f ∈ W 1,p(X).

We refer the reader to the monograph [18] for a thorough discussion of
this topic.

1.3. Test plans. To prove the equivalence betweenW 1,p(X) andN1,p(X),
L. Ambrosio, N. Gigli, and G. Savaré introduced in [5, 4] the notion of test
plan, which furnishes a more ‘probabilistic’ way to measure the exceptional
curves in the weak upper gradient condition.

Let (X, d,m) be a metric measure space. Given any q ∈ (1,∞) and t ∈ (0, 1],
following [11] we define the q-energy functional Eq,t : C([0, 1],X) → [0,+∞]
as

Eq,t(γ) := t
( t�

0

|γ̇s|q ds
)1/q

if γ ∈ ACq([0, 1],X),
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and Eq,t(γ) := +∞ otherwise. It can be readily checked that Eq,t is a Borel
mapping.

Definition 1.8 (Test plan [4]). Let (X, d,m) be a metric measure space
and q ∈ (1,∞). Then a Borel probability measure π on C([0, 1],X) is a q-test
plan on (X, d,m) provided:

(i) There is a constant C > 0 such that (et)#π ≤ Cm for every t ∈ [0, 1].
The minimal such C is denoted by Comp(π) > 0 and called the com-
pression constant.

(ii) The measure π has finite kinetic q-energy, which means that

KEq(π) :=
�
Eq,1(γ)

q dπ(γ) < +∞.

In particular, π is concentrated on ACq([0, 1],X).

Also, we say that a Borel probability measure π on C([0, 1],X) is an ∞-test
plan on (X, d,m) provided it satisfies (i) and is concentrated on an equi-
Lipschitz family of curves.

Observe that if q, q′ ∈ (1,∞] satisfy q′ ≤ q, then every q-test plan is a
q′-test plan. Moreover, if π is a q-test plan and s, t ∈ [0, 1] with s < t, then
(restrts)#π is a q-test plan.

The relation between test plans and modulus has been deeply investigated
in [3]. The following result (whose proof can be found, e.g., in [16, Lemma
2.2.26]) is sufficient for the purposes of this paper. As the formulation is
slightly different, we report here also its proof.

Lemma 1.9. Let (X, d,m) be a metric measure space. Let p, q ∈ (1,∞)
satisfy 1/p + 1/q = 1. Fix a q-test plan π and a family Γ ⊆ AC([0, 1],X)
of non-constant curves with Modp(Γ ) = 0. Then there exists a Borel set
N ⊆ C([0, 1],X) such that Γ ⊆ N and π(N) = 0.

Proof. For any n ∈ N, there is a Borel function ρn : X → [0,+∞] such
that

	1
0 ρn(γt)|γ̇t| dt ≥ 1 for every γ ∈ Γ and

	
ρpn dm ≤ 1/n. Since (γ, t) 7→

ρn(γt)|γ̇t| is a Borel function, the set Nn := {γ |
	1
0 ρn(γt)|γ̇t| dt ≥ 1} is Borel.

Therefore, the Borel set N :=
⋂

nNn contains Γ and satisfies

π(N) ≤ inf
n∈N

π(Nn) = inf
n∈N

�
1Nn(γ) dπ(γ) ≤ inf

n∈N

� 1�

0

ρn(γt)|γ̇t|dt dπ(γ)

≤ inf
n∈N

( � 1�

0

ρpn ◦ et dt dπ
)1/p( � 1�

0

|γ̇t|q dt dπ(γ)
)1/q

≤ Comp(π)1/pKEq(π)
1/q inf

n∈N

1

n1/p
= 0,

thus proving the statement.
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A proof of the following continuity result can be found, e.g., in [16, Propo-
sition 2.1.4].

Proposition 1.10. Let (X, d,m) be a metric measure space. Let q ∈
(1,∞) and r ∈ [1,∞). Let π be a q-test plan on (X, d,m). Then for any
function f ∈ Lr(m),

[0, 1] ∋ t 7→ f ◦ et ∈ Lr(m) is a strongly continuous map.

1.3.1. (Π, p)-weak upper gradients. We now focus on the role that test
plans play in the Sobolev theory. The key point is that they can be used to
select the ‘negligible families of curves’ in the weak upper gradient condition,
as we are going to explain in the next definition.

Definition 1.11 ((Π, p)-weak upper gradient). Let (X, d,m) be a metric
measure space and let p, q ∈ (1,∞) satisfy 1/p+1/q = 1. Let Π be a family
of q-test plans on X. Let f ∈ Lp(m). Then a function G ∈ Lp(m) is a (Π, p)-
weak upper gradient of f provided for any π ∈ Π we have f ◦ γ ∈ W 1,1(0, 1)
for π-a.e. γ ∈ ACq([0, 1],X) and∣∣∣∣ ddtf(γt)

∣∣∣∣ ≤ G(γt)|γ̇t| for (π ⊗ L1)-a.e. (γ, t) ∈ ACq([0, 1],X)× [0, 1].

We denote by GΠ,p(f) the collection of all (Π, p)-weak upper gradients of f .
Also, we define

W 1,p
Π (X) := {f ∈ Lp(m) | GΠ,p(f) ̸= ∅}.

Observe that N1,p(X) ⊆ W 1,p
Π (X) and Dp[f ] ⊆ GΠ,p(f) for every f ∈

N1,p(X) by Lemma 1.9.

Lemma 1.12. Let (X, d,m) be a metric measure space and p, q ∈ (1,∞)
satisfy 1/p+ 1/q = 1. Let Π be a family of q-test plans on X. Then the set
GΠ,p(f) is a closed convex lattice of Lp(m) for every f ∈ W 1,p

Π (X).

Proof. Fix f ∈ W 1,p
Π (X). Clearly, if G1, G2 ∈ GΠ,p(f), then

min{G1, G2} ∈ GΠ,p(f)

as well. Now fix a sequence (Gn)n ⊆ GΠ,p(f) such that Gn → G ∈ Lp(m)
strongly in Lp(m). Up to taking a subsequence (not relabelled), we have
Gn → G pointwise m-a.e. Given any t ∈ [0, 1], it follows from the assumption
(et)#π ≪ m that Gn ◦ et → G ◦ et pointwise π-a.e. as n → ∞. Also, by the
Fubini theorem we see that for L1-a.e. t ∈ [0, 1] we have

(1.5)

∣∣∣∣ ddtf(γt)
∣∣∣∣ ≤ Gn(γt)|γ̇t| for every n ∈ N, π-a.e. γ ∈ ACq([0, 1],X).

By letting n → ∞ in (1.5), we find for L1-a.e. t ∈ [0, 1] that
∣∣ d
dtf(γt)

∣∣ ≤
G(γt)|γ̇t| is satisfied for π-a.e. γ. By using the Fubini theorem again, we
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conclude that G ∈ GΠ,p(f). This shows that the set GΠ,p(f) is strongly
closed in Lp(m), thus completing the proof of the statement.

Definition 1.13 (Minimal (Π, p)-weak upper gradient). Let (X, d,m)
be a metric measure space and p, q ∈ (1,∞) satisfy 1/p + 1/q = 1. Let Π

be a family of q-test plans on X. Fix any function f ∈ W 1,p
Π (X). Then the

(unique) minimal element of GΠ,p(f) is denoted by |Df |Π,p and called the
minimal (Π, p)-weak upper gradient of f .

Whenever Π = {π} is a singleton, we use the shorthand notation W 1,p
π (X)

and |Df |π,p.

Remark 1.14. Observe that |Df |Π,p ≤ Gf,p holds m-a.e. for every f ∈
N1,p(X).

As already mentioned above, by considering the totality of test plans it
is possible to recover both the Sobolev space and the minimal relaxed slope
of each Sobolev function:

Theorem 1.15 (Sobolev space via test plans [4]). Let (X, d,m) be a
metric measure space. Let p, q ∈ (1,∞) be such that 1/p+ 1/q = 1. Denote
by Πq the family of all q-test plans on X. Then W 1,p

Πq
(X) = W 1,p(X) and

|Df |Πq ,p = |Df |p for every f ∈ W 1,p(X).

In particular, N1,p(X) = W 1,p(X) and Gf,p = |Df |p for every f ∈ W 1,p(X).

Proposition 1.16. Let (X, d,m) be a metric measure space and p, q ∈
(1,∞) satisfy 1/p+1/q = 1. Let Π ⊆ Π ′ be two given families of q-test plans
on X. Then W 1,p

Π′ (X) ⊆ W 1,p
Π (X) and the inequality |Df |Π,p ≤ |Df |Π′,p is

satisfied m-a.e. for every f ∈ W 1,p
Π′ (X). In particular, W 1,p(X) ⊆ W 1,p

Π (X)
and

|Df |Π,p ≤ |Df |p m-a.e. for every f ∈ W 1,p(X).

Proof. To prove the first part of the claim, it suffices to observe that any
(Π ′, p)-weak upper gradient is a (Π, p)-weak upper gradient, thus W 1,p

Π′ (X) ⊆
W 1,p

Π (X) and for any f ∈ W 1,p
Π′ (X) the function |Df |Π′,p is a (Π, p)-weak

upper gradient of f . Consequently, the last part of the statement follows
from the first one by recalling Theorem 1.15.

1.3.2. Plans representing a gradient. A special class of test plans is that
of plans representing a gradient, which have been introduced by N. Gigli
in [11]. Roughly speaking, they are test plans whose derivative at time 0
coincides with the gradient of a given Sobolev function, in some generalised
sense. These objects will play a fundamental role in this paper.

Definition 1.17 (Test plan representing a gradient [11]). Let (X, d,m)
be a metric measure space. Let p, q ∈ (1,∞) satisfy 1/p + 1/q = 1. Let
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f ∈ W 1,p(X). Then a q-test plan π is said to q-represent the gradient of f
provided the following properties hold:

f ◦ et − f ◦ e0
Eq,t

→ |Df |p ◦ e0 strongly in Lp(π) as t ↘ 0,(1.6a) (
Eq,t

t

)q/p

→ |Df |p ◦ e0 strongly in Lp(π) as t ↘ 0.(1.6b)

Remark 1.18. The above definition of test plan representing a gradient
is slightly different from the one introduced in [11]. First of all, a plan π
representing a gradient in the sense of [11] is not necessarily a test plan;
however, for some t ∈ (0, 1), (restrt0)#π is a test plan on X. Also, the ap-
proach we chose is not the original one proposed in [11, Definition 3.7], but
is rather its equivalent reformulation provided in [11, Proposition 3.11].

Lemma 1.19. Let (X, d,m) be a metric measure space. Let p, q ∈ (1,∞)
satisfy 1/p + 1/q = 1. Let π be a q-test plan that q-represents the gradient
of some function f ∈ W 1,p(X). Then

f ◦ et − f ◦ e0
t

→ |Df |pp ◦ e0 strongly in L1(π) as t ↘ 0,(1.7a)

Eq,t

t
→ |Df |p/qp ◦ e0 strongly in Lq(π) as t ↘ 0.(1.7b)

Proof. First, let us prove (1.7b). Let ti ↘ 0 be fixed. Since

(Eq,ti /ti)
q/p → |Df |p ◦ e0 strongly in Lp(π) as i → ∞

by (1.6b), we can assume (possibly passing to a subsequence) that Eq,ti /ti →
|Df |p/qp ◦ e0 pointwise π-a.e. as i → ∞ and that there exists H ∈ Lp(π) such
that (Eq,ti /ti)

q/p ≤ H holds π-a.e. for every i ∈ N. In particular, for any
i ∈ N we have the π-a.e. inequalities∣∣∣∣Eq,ti

ti
−|Df |p/qp ◦e0

∣∣∣∣q ≤ 2q−1

(
Eq,ti

ti

)q

+2q−1|Df |pp◦e0 ≤ 2q−1(Hp+|Df |pp◦e0).

Therefore, by the dominated convergence theorem we get�
|Eq,ti /ti − |Df |p/qp ◦ e0|q dπ → 0 as i → ∞,

whence (1.7b) follows (thanks to the arbitrariness of ti ↘ 0).
In order to prove (1.7a), observe that (1.6a), (1.7b), and the Hölder in-

equality yield
f ◦ et − f ◦ e0

t
=

f ◦ et − f ◦ e0
Eq,t

Eq,t

t
→ |Df |1+p/q

p ◦ e0 = |Df |pp ◦ e0

strongly in L1(π) as t ↘ 0.

The existence of plans representing a gradient has been proven in [11,
Theorem 3.14]:
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Theorem 1.20 (Existence of test plans representing a gradient [11]). Let
(X, d,m) be a metric measure space. Let p, q ∈ (1,∞) satisfy 1/p+ 1/q = 1.
Fix any µ ∈ Pq(X) such that µ ≤ Cm for some constant C > 0. Then for
any f ∈ W 1,p(X) there exists a q-test plan π that q-represents the gradient
of f and satisfies (e0)#π = µ.

1.3.3. Velocity of a test plan. Another useful tool is the velocity of a test
plan π, which consists in an abstract way to define—in a suitable sense—
the velocity γ′t at time t of π-a.e. curve γ. Here, the concept of pullback
of a normed module comes into play. The notion of velocity of a test plan
was introduced in [12, Theorem 2.3.18] in the case where the tangent mod-
ule is separable. Below, we adapt the original definition and construction
to the case of arbitrary metric measure spaces, thus dropping the separabil-
ity assumption. In Remark 1.22, we comment on the relation between this
generalisation and the previous approach.

Theorem 1.21 (Velocity of a test plan [12]). Let (X, d,m) be a metric
measure space and fix exponents p, q ∈ (1,∞) such that 1/p + 1/q = 1. Let
π be a given q-test plan on (X, d,m). Then there exists a unique element
π′ ∈ (e∗Lp(T ∗X))∗ such that, for any function f ∈ W 1,p(X) and L1-a.e.
t ∈ [0, 1], we have

(1.8)
d

dt
f ◦ et := lim

h→0

f ◦ et+h − f ◦ et
h

= π′(e∗dpf)(·, t),

where the derivative is taken with respect to the strong topology of L1(π).
Moreover,

(1.9) |π′|(γ, t) = |γ̇t| for (π ⊗ L1)-a.e. (γ, t) ∈ ACq([0, 1],X)× [0, 1].

We call π′ the p-velocity of the q-test plan π.

Proof. By [16, Theorem 2.1.21], there exists Der : W 1,p(X) → L1(π⊗L1)
linear such that for every f ∈ W 1,p(X),

lim
h→0

∥∥∥∥1h(f ◦ et+h − f ◦ et)− Der(f)(·, t)
∥∥∥∥
L1(π)

= 0 for L1-a.e. t ∈ [0, 1].

Moreover, the operator Der satisfies the estimate

(1.10) |Der(f)|(γ, t) ≤ |Df |p(γt)|γ̇t| for (π ⊗ L1)-a.e. (γ, t).

Actually, [16, Theorem 2.1.21] was proven in the case where p = 2, but
the arguments can be easily adapted to treat general exponents p ∈ (1,∞).
Consider V := {e∗dpf | f ∈ W 1,p(X)}, which is a generating linear subspace
of e∗Lp(T ∗X). We define the operator L : V → L1(π ⊗ L1) as L(e∗dpf) :=
Der(f). It follows from (1.10) that

|L(e∗dpf)|(γ, t) ≤ |e∗dpf |(γ, t)|γ̇t| for (π ⊗ L1)-a.e. (γ, t),
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thus the map L is well-defined, linear, and continuous. Hence, [16, Proposi-
tion 3.2.9] grants the existence of a unique element π′ ∈ (e∗Lp(T ∗X))∗ such
that π′(e∗dpf) = L(e∗dpf) for every f ∈ W 1,p(X), so that (1.8) is verified.
Moreover, π′ satisfies |π′|(γ, t) ≤ |γ̇t| for (π ⊗ L1)-a.e. (γ, t). Only the con-
verse inequality is left to prove. To this end, fix any dense sequence (xi)i in X
and define the 1-Lipschitz functions fij : X → R as fij := max{j−d(·, xi), 0}
for every i, j ∈ N. Notice that the identity d(x, y) = supi,j(fij(x) − fij(y))
holds for every x, y ∈ X. For every i, j ∈ N and π-a.e. γ, we see that fij ◦ γ
is absolutely continuous and thus d

dtfij(γt) = π′(e∗dpfij)(γ, t) for L1-a.e.
t ∈ [0, 1]. Therefore, for (π ⊗ L1)-a.e. (γ, t) ∈ ACq([0, 1],X)× [0, 1] we may
estimate

|γ̇t| = lim
h↘0

d(γt+h, γt)

h
= lim

h↘0
sup
i,j∈N

fij(γt+h)− fij(γt)

h

= lim
h↘0

sup
i,j∈N

t+h�

t

d

ds
fij(γs) ds = lim

h↘0
sup
i,j∈N

t+h�

t

π′(e∗dpfij)(γ, s) ds

≤ lim
h↘0

sup
i,j∈N

t+h�

t

|π′|(γ, s)|Dfij |p(γs) ds ≤ lim
h↘0

t+h�

t

|π′|(γ, s) ds

= |π′|(γ, t),

where the last passage is obtained by applying the Lebesgue differentiation
theorem to |π′|(γ, ·). This yields the identity in (1.9), whence accordingly
the statement follows.

Remark 1.22. In [12, Theorem 2.3.18]—where Lq(TX) is assumed to be
separable—the velocity of a q-test plan π is given by a family {π′

t}t∈[0,1] of
elements π′

t ∈ e∗tL
q(TX) such that for any f ∈ W 1,p(X) we have

lim
h→0

∥∥∥∥f ◦ et+h − f ◦ et
h

− (e∗tdpf)(π
′
t)

∥∥∥∥
L1(π)

= 0 for L1-a.e. t ∈ [0, 1],

and |π′
t|(γ) = |γ̇t| for (π⊗L1)-a.e. (γ, t). Actually, in [12] just the case p = 2

is considered, but all arguments can be easily carried over to the case of an
arbitrary p ∈ (1,∞). This kind of statement can be recovered from Theorem
1.21 as follows. First, the separability of Lq(TX) grants that (e∗Lp(T ∗X))∗

can be identified with e∗Lq(TX) (according to [12, Theorem 1.6.7]). More-
over, write M for the set of all families V = {Vt}t∈[0,1] ∈

∏
t∈[0,1] e

∗
tL

q(TX)
such that

C([0, 1],X)× [0, 1] ∋ (γ, t) 7→ e∗tω(Vt)(γ) ∈ R is Borel measurable,

for every ω ∈ Lp(T ∗X). It can be readily checked that the resulting space
M can be made into an Lq(π⊗L1)-normed L∞(π⊗L1)-module by defining
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the following pointwise operations:
(V +W )t := Vt +Wt for L1-a.e. t ∈ [0, 1],

(f · V )t := f(·, t) · Vt for L1-a.e. t ∈ [0, 1],

|V |(γ, t) := ess sup {e∗tω(Vt)(γ) | ω ∈ Lp(T ∗X), |ω| ≤ 1 m-a.e.},
for all V,W ∈ M and f ∈ L∞(π ⊗ L1). Under suitable functional-analytic
assumptions—for instance, the separability of Lq(TX)—it turns out that
M can be identified with e∗Lq(TX); we omit the details. Hence, the ele-
ment π′ ∈ e∗Lq(TX) provided by Theorem 1.21 can be viewed as a family
{π′

t}t∈[0,1] ∈ M satisfying the conclusions of [12, Theorem 2.3.18].

Proposition 1.23. Let (X, d,m) be a metric measure space and p, q ∈
(1,∞) satisfy 1/p + 1/q = 1. Let π be a q-test plan on X. Then for every
function f ∈ W 1,p(X) the mapping t 7→ f ◦ et belongs to ACq([0, 1], L1(π))
and satisfies

(1.11) f ◦ et − f ◦ es =
t�

s

π′(e∗dpf)(·, r) dr for all s, t ∈ [0, 1] with s < t.

Proof. Define

ϕ(r) :=
( �

|γ̇r|q dπ(γ)
)1/q

for L1-a.e. r ∈ [0, 1].

Given that
	1
0 ϕ(r)

q dr =
	 	1

0 |γ̇r|
q dr dπ(γ) < +∞, we have ϕ ∈ Lq(0, 1). Fix

f ∈ W 1,p(X) and s, t ∈ [0, 1] with s < t. Then

∥f ◦ et − f ◦ es∥L1(π) =
�
|f(γt)− f(γs)| dπ(γ)

≤
� t�

s

|Df |p(γr)|γ̇r|dr dπ(γ)

≤
t�

s

( �
|Df |pp ◦ er dπ

)1/p( �
|γ̇r|q dπ(γ)

)1/q
dr

≤ Comp(π)1/p∥|Df |p∥Lp(m)

t�

s

ϕ(r) dr,

which shows that the curve [0, 1] ∋ t 7→ f ◦ et ∈ L1(π) is q-absolutely
continuous. Moreover, we know from Theorem 1.21 that the L1(π)-derivative
d
dtf ◦ et exists and equals π′(e∗dpf)(·, t) at L1-a.e. t ∈ [0, 1]. Therefore, the
identity in (1.11) follows from [16, Proposition 1.3.16].

2. Master test plans on metric measure spaces

2.1. Properties of plans representing a gradient. In order to prove
our main theorem, we first need to study some properties of plans represent-
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ing a gradient. Roughly speaking, we aim to show that if π represents the
gradient of f , then for any Sobolev function g the derivative of t 7→ g ◦ et at
t = 0 coincides with dg(∇f) ◦ e0, in a sense; see Proposition 2.3.

Lemma 2.1. Let (X, d,m) be a metric measure space. Let p, q ∈ (1,∞)
satisfy 1/p + 1/q = 1. Let f ∈ W 1,p(X). Let π be a q-test plan that q-
represents the gradient of f . Then for every function G ∈ Lp(m) with G ≥ 0
there exists a family {Φt}t∈(0,1) ⊆ L1(π) such that

(2.1)
t�

0

G ◦ es|π′|(·, s) ds ≤ Φt π-a.e. for every t ∈ (0, 1)

and Φt → G ◦ e0|Df |p/qp ◦ e0 strongly in L1(π) as t ↘ 0. In particular, if for
some g ∈ W 1,p(X) and ℓ ∈ L1(π) and ti ↘ 0 we have

ti�

0

π′(e∗dpg)(·, s) ds ⇀ ℓ weakly in L1(π) as i → ∞,

then

(2.2) |ℓ| ≤ |Df |p/qp ◦ e0|Dg|p ◦ e0 π-a.e.

Proof. Let G ∈ Lp(m), G ≥ 0 be fixed. If we define

Rt :=

t�

0

|G ◦ es −G ◦ e0| |π′|(·, s) ds,

then
t�

0

G ◦ es|π′|(·, s) ds ≤ Rt +G ◦ e0
t�

0

|π′|(·, s) ds

≤ Rt +G ◦ e0
( t�

0

|π′|q(·, s) ds
)1/q

=: Φt

in the π-a.e. sense. Observe that
�
Rt dπ =

� t�

0

|G ◦ es −G ◦ e0||π′|(·, s) ds dπ

≤
( � t�

0

|G ◦ es −G ◦ e0|p ds dπ
)1/p( � t�

0

|π′|q(·, s) ds dπ
)1/q

=
( t�

0

∥G ◦ es −G ◦ e0∥pLp(π) ds
)1/p

( � Eq
q,t

tq
dπ

)1/q

→ 0

as t ↘ 0, where we used the fact that
	
Eq
q,t /t

q dπ →
	
|Df |pp ◦ e0 dπ as

t ↘ 0 and the continuity of [0, 1] ∋ s 7→ G ◦ es ∈ Lp(π). Also, we see that
(
	t
0 |π

′|q(·, s) ds)1/q = Eq,t /t → |Df |p/qp ◦ e0 strongly in Lq(π) as t ↘ 0,
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whence accordingly G ◦ e0(
	t
0 |π

′|q(·, s) ds)1/q → G ◦ e0|Df |p/qp ◦ e0 strongly
in L1(π). All in all, we have proved that Φt → G ◦ e0|Df |p/qp ◦ e0 in L1(π).

Let us now prove the last claim. Thanks to the first part of the statement
applied to the function G := |Dg|p, we can find a sequence (Φi)i ⊆ L1(π)

such that Φi → |Dg|p ◦ e0|Df |p/qp ◦ e0 strongly in L1(π) as i → ∞ and

(2.3)
ti�

0

π′(e∗dpg)(·, s) ds ≤
ti�

0

|Dg|p ◦ es|π′|(·, s) ds ≤ Φi π-a.e.

for every i ∈ N. In order to prove the inequality in (2.2), we can ar-
gue by contradiction: suppose there exists a Borel set P ⊆ C([0, 1],X)

with π(P ) > 0 and ℓ(γ) > |Df |p/qp (γ0)|Dg|p(γ0) for π-a.e. γ ∈ P . Since	ti
0 π′(e∗dpg)(·, s) ds ⇀ ℓ and Φi ⇀ |Df |p/qp ◦ e0|Dg|p ◦ e0 weakly in L1(π) as
i → ∞, and 1P ∈ L∞(π), we deduce that

�

P

|Df |p/qp ◦ e0|Dg|p ◦ e0 dπ <
�

P

ℓdπ

= lim
i→∞

�
1P

ti�

0

π′(e∗dpg)(·, s) ds dπ

(2.3)

≤ lim
i→∞

�
1PΦi dπ

=
�

P

|Df |p/qp ◦ e0|Dg|p ◦ e0 dπ,

which leads to a contradiction. Therefore, (2.2) follows.

Corollary 2.2. Let (X, d,m) be a metric measure space. Let p, q ∈
(1,∞) satisfy 1/p + 1/q = 1. Let f ∈ W 1,p(X). Let π be a q-test plan that
q-represents the gradient of f . Fix g ∈ W 1,p(X) and ti ↘ 0. Then there exist
a subsequence (tij )j and a function ℓ ∈ L1(π) such that

(2.4)
tij�

0

π′(e∗dpg)(·, s) ds ⇀ ℓ weakly in L1(π) as j → ∞.

Proof. Pick functions {Φt}t∈(0,1) ⊆ L1(π) associated with G := |Dg|p as
in Lemma 2.1. Given that the sequence (Φti)i is strongly convergent in L1(π),
we can find a subsequence (tij )j and a non-negative function H ∈ L1(π) such
that Φtij

≤ H holds π-a.e. for every j ∈ N. Then

∣∣∣ tij�
0

π′(e∗dpg)(·, s) ds
∣∣∣ ≤ tij�

0

|Dg|p ◦ es|π′|(·, s) ds
(2.1)

≤ Φtij
≤ H π-a.e.

for every j ∈ N. Therefore, thanks to [16, Lemma 1.3.22] we know that there



Testing the Sobolev property with a single test plan 19

exists a function ℓ ∈ L1(π) such that (possibly passing to a subsequence,
not relabelled) the property in (2.4) holds.

Proposition 2.3. Let (X, d,m) be a metric measure space. Let p, q ∈
(1,∞) satisfy 1/p + 1/q = 1. Let f ∈ W 1,p(X). Let π be a q-test plan
that q-represents the gradient of f . Fix any two sequences (gn)n ⊆ W 1,p(X)
and ti ↘ 0. Then there exist a subsequence (tij )j and an element η ∈
Dual(e∗0dpf)—where the mapping Dual is defined as in (1.2)—such that

(2.5)
gn ◦ etij − gn ◦ e0

tij
⇀ η(e∗0dpgn) weakly in L1(π) as j → ∞

for every n ∈ N.

Proof. Fix C ⊆ {f}∪{gn | n ∈ N} with the property that {e∗0dpg | g ∈ C}
is a maximal linearly independent subset of {e∗0dpg | g ∈ {f} ∪ {gn}n}. By
Corollary 2.2 and a diagonalisation argument, the sequence ti ↘ 0 admits
a subsequence (not relabelled) such that

	ti
0 π′(e∗dpg)(·, s) ds ⇀ ℓg weakly

in L1(π) as i → ∞ for every g ∈ C, for some limit functions ℓg ∈ L1(π).
Denote by V ⊆ e∗0L

p(T ∗X) the linear span of {e∗0dpg : g ∈ C}. Then we
define L : V → L1(π) as the unique linear operator satisfying L(e∗0dpg) = ℓg
for every g ∈ C. Given that

	ti
0 π′(e∗dpg)(·, s) ds ⇀ L(e∗0dpg) weakly in L1(π)

as i → ∞ for every g ∈ V, it follows from the last part of the statement of
Lemma 2.1 that

|L(e∗0dpg)| ≤ |Df |p/qp ◦ e0|Dg|p ◦ e0 = |e∗0dpf |p/q|e∗0dpg| π-a.e.
for every g ∈ V. Hence, writing M for the Lp(π)-normed L∞(π)-submodule
of e∗0L

p(T ∗X) generated by V, we know from [16, Proposition 3.2.9] that
there exists a unique L∞(π)-linear map η̃ : M → L1(π) such that η̃|V = L
and |η̃(ω)| ≤ |e∗0dpf |p/q|ω| in the π-a.e. sense for every ω ∈ M . By using the
Hahn–Banach theorem, we can find a (not necessarily unique) element η ∈
(e∗0L

p(T ∗X))∗ which extends η̃ and satisfies the inequality |η| ≤ |e∗0dpf |p/q in
the π-a.e. sense. Observe that the property (2.5) is verified by construction.
It only remains to show that η ∈ Dual(e∗0dpf). Since π represents the gradient
of f , one sees that (f ◦ eti − f ◦ e0)/ti → |Df |pp ◦ e0 = |e∗0dpf |p strongly in
L1(π) as i → ∞. We also have (f ◦eti−f ◦e0)/ti ⇀ η(e∗0dpf) weakly in L1(π)
as i → ∞ by definition of η, whence it follows that η(e∗0dpf) = |e∗0dpf |p holds
π-a.e. Then

|e∗0dpf |p = η(e∗0dpf) ≤ |η| |e∗0dpf | ≤ |e∗0dpf |p/q+1 = |e∗0dpf |p π-a.e.,
whence |η| = |e∗0dpf |p/q holds π-a.e. and accordingly η ∈ Dual(e∗0dpf), as
required.

Albeit not strictly needed for the purposes of this article, let us illustrate
a reinforcement of Proposition 2.3 under some additional assumptions on
the metric measure space.
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Corollary 2.4. Let (X, d,m) be a metric measure space. Let p, q ∈
(1,∞) satisfy 1/p+ 1/q = 1. Let f ∈ W 1,p(X). Let π be a q-test plan on X
that q-represents the gradient of f .

(i) If W 1,p(X) is separable, then for any sequence ti ↘ 0 there exist a
subsequence (tij )j and an element η ∈ Dual(e∗0dpf) such that for any
g ∈ W 1,p(X) we have

(2.6)
g ◦ etij − g ◦ e0

tij
⇀ η(e∗0dpg) weakly in L1(π) as j → ∞.

(ii) If (X, d,m) is infinitesimally Hilbertian and p = 2, then for any g ∈
W 1,2(X) we have

(2.7)
g ◦ et − g ◦ e0

t
⇀ ⟨∇2g,∇2f⟩ ◦ e0 weakly in L1(π) as t ↘ 0.

Proof. (i) Fix a sequence ti ↘ 0 and a countable, strongly dense subset C
of W 1,p(X). By virtue of Proposition 2.3, there exists η ∈ Dual(e∗0dpf) such
that (up to a subsequence, not relabelled)

(2.8)
ti�

0

π′(e∗dpg)(·, s) ds ⇀ η(e∗0dpg) weakly in L1(π) as i → ∞

for every g∈C. Now fix g∈W 1,p(X). Choose any sequence (gn)n⊆C such that
gn→g with respect to the strong topology of W 1,p(X). Fix any h∈L∞(π)
and some constant M > 0 satisfying the inequality

� Eq
q,ti

tqi
dπ ≤ M q for every i ∈ N.

Given any i, n ∈ N, we can estimate

(2.9)
∣∣∣ �h ti�

0

π′(e∗dpg)(·, s) ds dπ −
�
hη(e∗0dpg) dπ

∣∣∣ ≤ Ai,n +Bi,n + Cn,

where we set

Ai,n :=
∣∣∣ �h ti�

0

π′(e∗dp(g − gn))(·, s) ds dπ
∣∣∣,

Bi,n :=
∣∣∣ �h ti�

0

π′(e∗dpgn)(·, s) ds dπ −
�
hη(e∗0dpgn) dπ

∣∣∣,
Cn :=

∣∣∣ �hη(e∗0dp(gn − g)) dπ
∣∣∣.
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Observe that

Ai,n ≤ ∥h∥L∞(π)

� ti�

0

|D(g − gn)|p ◦ es|π′|(·, s) ds dπ

≤ ∥h∥L∞(π)

( � ti�

0

|D(g − gn)|pp ◦ es dsdπ
)1/p( � ti�

0

|π′|q(·, s) ds dπ
)1/q

≤ Comp(π)1/p∥h∥L∞(π)

( �
|D(g − gn)|pp dm

)1/p
( � Eq

q,ti

tqi
dπ

)1/q

≤ M Comp(π)1/p∥h∥L∞(π)∥g − gn∥W 1,p(X).

Moreover, it follows from (2.8) that limi→∞Bi,n = 0 for any given n ∈ N.
Finally, we estimate

Cn ≤ ∥h∥L∞(π)

�
|D(gn − g)|p ◦ e0|η|dπ

≤ ∥h∥L∞(π)

( �
|D(gn − g)|pp ◦ e0 dπ

)1/p( �
|η|q dπ

)1/q

≤ Comp(π)1/p∥h∥L∞(π)

( �
|D(gn − g)|pp dm

)1/p( �
|Df |pp ◦ e0 dπ

)1/q

≤ Comp(π)∥h∥L∞(π)∥gn − g∥W 1,p(X)∥f∥
p/q
W 1,p(X)

.

Hence, given any ε > 0, we can find n ∈ N such that Ai,n+Cn ≤ ε for every
i ∈ N. Then

lim
i→∞

∣∣∣ �h ti�

0

π′(e∗dpg)(·, s) ds dπ −
�
hη(e∗0dpg) dπ

∣∣∣ (2.9)

≤ ε+ lim
i→∞

Bi,n = ε.

By letting ε ↘ 0, we conclude that

lim
i→∞

�
h

ti�

0

π′(e∗dpg)(·, s) dsdπ =
�
hη(e∗0dpg) dπ

for every h ∈ L∞(π), whence
	ti
0 π′(e∗dpg)(·, s) ds ⇀ η(e∗0dpg) weakly in

L1(π) as i → ∞. Given that (g ◦ eti − g ◦ e0)/ti =
	ti
0 π′(e∗dpg)(·, s) ds by

Proposition 1.23, we have proven (i).
(ii) The infinitesimal Hilbertianity assumption grants that both W 1,2(X)

and L2(TX) are separable; see, e.g., [16, Proposition 4.3.5]. In particular, we
know from [12, Theorem 1.6.7] that the space (e∗0L

2(T ∗X))∗ is isometrically
isomorphic to e∗0L

2(TX). Thanks to this fact, we can identify any element η
satisfying (2.6) (for some tij ↘ 0) with an element v of the pullback module
e∗0L

2(TX). Since (e∗0d2f)(v) = |e∗0d2f |2 = |v|2 holds π-a.e., we get

|v − e∗0∇2f |2 = |v|2 − 2⟨v, e∗0∇2f⟩+ |e∗0∇2f |2

= |v|2 − 2(e∗0d2f)(v) + |e∗0d2f |2 = 0
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in the π-a.e. sense, whence v = e∗0∇2f . In particular, the limit v does not
depend on (tij )j , thus accordingly, as t ↘ 0, we have

g ◦ et − g ◦ e0
t

⇀ (e∗0d2g)(e
∗
0∇2f) = ⟨∇2g,∇2f⟩ ◦ e0 weakly in L1(π)

for every g ∈ W 1,2(X). Therefore, the sought conclusion (2.7) is reached.

2.2. Existence of master test plans on metric measure spaces.
We now have at our disposal all the ingredients that we need to prove our
main theorem, which says that a single test plan is sufficient to identify the
minimal relaxed slope of every Sobolev function. In this regard, the relevant
notion is that of master test plan:

Definition 2.5 (Master test plan). Let (X, d,m) be a metric measure
space. Fix p, q ∈ (1,∞) such that 1/p + 1/q = 1. Then a q-test plan πq on
(X, d,m) is said to be a master q-test plan provided that

|Df |πq ,p = |Df |p for every f ∈ W 1,p(X).

Here, we are using the fact that W 1,p(X) ⊆ W 1,p
πq (X), which is granted by

Proposition 1.16.

Hence, our main result about the identification of the minimal relaxed
slope reads as follows:

Theorem 2.6 (Existence of master test plans). Let (X, d,m) be a metric
measure space. Fix any p, q ∈ (1,∞) such that 1/p + 1/q = 1. Then there
exists a master q-test plan πq on (X, d,m).

Proof. We subdivide the proof into several steps:

Step 1. First of all, fix a countable family C ⊆ W 1,p(X) having the fol-
lowing property: given any f ∈ W 1,p(X), there exists a sequence (fn)n ⊆ C
such that fn → f and |Dfn|p → |Df |p strongly in Lp(m) as n → ∞. The ex-
istence of C is granted by the separability of the product space Lp(m)×Lp(m)
and thus, a fortiori, of its subset {(f, |Df |p) | f ∈ W 1,p(X)}. Fix any mea-
sure m̃ ∈ Pq(X) such that m ≪ m̃ ≤ Cm for some C > 0, whose existence is
shown in Remark 1.1. Given any f ∈ C, there exists a q-test plan πf on X
that q-represents the gradient of f and satisfies (e0)#π

f = m̃ (by Theorem
1.20). Let us define Π := {πf : f ∈ C}. We aim to prove that

(2.10) |Df |Π,p = |Df |p for every f ∈ W 1,p(X).

Since |Df |Π,p ≤ |Df |p m-a.e. by Proposition 1.16, to prove (2.10) it suffices
to show that

(2.11)
�
|Df |pp dm̃ ≤

�
|Df |pΠ,p dm̃ for every f ∈ W 1,p(X).

Step 2. In order to show (2.11), let f ∈ W 1,p(X) be fixed. Choose
any sequence (fn)n ⊆ C such that fn → f and |Dfn|p → |Df |p in Lp(m).
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Possibly passing to a subsequence (not relabelled), we may assume that
|Dfn|p → |Df |p pointwise m-a.e. and that there exists a function G ∈ Lp(m)
such that |Dfn|p ≤ G holds m-a.e. for every n ∈ N. For brevity, let us put
πn := πfn for every n ∈ N. Given any n ∈ N, thanks to Proposition 2.3
there exist an element ηn ∈ Dual(e∗0dpfn) and a sequence (tni )i ⊆ (0, 1) with
limi→∞ tni = 0 such that

(2.12)
f ◦ etni − f ◦ e0

tni
⇀ ηn(e

∗
0dpf) weakly in L1(πn) as i → ∞.

Therefore, by applying (2.12) we deduce that
�
ηn(e

∗
0dpf) dπ

n

= lim
i→∞

� f ◦ etni − f ◦ e0
tni

dπn ≤ lim
i→∞

1

tni

�
|f(γtni )− f(γ0)| dπn(γ)

≤ lim
i→∞

� tni�

0

∣∣∣∣ ddsf(γs)
∣∣∣∣ ds dπn(γ) ≤ lim

i→∞

� tni�

0

|Df |Π,p(γs)|γ̇s|ds dπn(γ)

≤ lim
i→∞

( � tni�

0

|Df |pΠ,p ◦ es ds dπ
n
)1/p( � tni�

0

|γ̇s|q ds dπn(γ)
)1/q

= lim
i→∞

( tni�

0

∥∥|Df |Π,p ◦ es
∥∥p
Lp(πn)

ds
)1/p

( � Eq
q,tni

(tni )
q
dπn

)1/q

=
( �

|Df |pΠ,p ◦ e0 dπ
n
)1/p( �

|Dfn|pp ◦ e0 dπn
)1/q

=
∥∥|Df |Π,p

∥∥
Lp(m̃)

∥∥|Dfn|p
∥∥p/q
Lp(m̃)

.

Furthermore, observe that for any n ∈ N we have∣∣∣ � |Df |pp dm̃−
�
ηn(e

∗
0dpf) dπ

n
∣∣∣

≤
∣∣∣ � |Df |pp dm̃−

�
ηn(e

∗
0dpfn) dπ

n
∣∣∣+ ∣∣∣ � ηn(e∗0dp(fn − f)) dπn

∣∣∣
≤

∣∣∣ � |Df |pp dm̃−
�
|e∗0dpfn|p dπn

∣∣∣+ �
|ηn| |D(fn − f)|p ◦ e0 dπn

≤
∣∣∣ � |Df |pp dm̃−

�
|Dfn|pp dm̃

∣∣∣+ ( �
|ηn|q dπn

)1/q( �
|D(fn − f)|pp dm̃

)1/p

≤
∣∣∣ � |Df |pp dm̃−

�
|Dfn|pp dm̃

∣∣∣+ C1/p
( �

|Dfn|pp dm̃
)1/q

∥fn − f∥W 1,p(X).

Given that |Dfn|pp → |Df |pp pointwise m̃-a.e. and |Dfn|pp ≤ Gp ∈ L1(m̃)
holds m̃-a.e. for all n ∈ N, by using the dominated convergence theorem we
deduce that

	
|Dfn|pp dm̃ →

	
|Df |pp dm̃. Consequently, by letting n → ∞ in

the above estimates we get
	
ηn(e

∗
0dpf) dπ

n →
	
|Df |pp dm̃ as n → ∞. All in
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all, we can conclude that�
|Df |pp dm̃ = lim

n→∞

�
ηn(e

∗
0dpf) dπ

n ≤
∥∥|Df |Π,p

∥∥
Lp(m̃)

lim
n→∞

∥∥|Dfn|p
∥∥p/q
Lp(m̃)

≤
∥∥|Df |Π,p

∥∥
Lp(m̃)

∥∥|Df |p
∥∥p/q
Lp(m̃)

.

This proves the validity of (2.11) and accordingly of (2.10).

Step 3. It remains to deduce the claim from (2.10). Define Π := (πk)k
and

η :=
∞∑
k=1

πk

2k max{Comp(πk),KEq(πk), 1}
, πq :=

η

η(C([0, 1],X))
.

Since all measures πk are Borel measures concentrated on ACq([0, 1],X),
we see that η is a Borel measure concentrated on ACq([0, 1],X) as well.
Also, η(C([0, 1],X)) ≤

∑∞
k=1 1/2

k = 1, so that πq is well-defined and is
thus a Borel probability measure concentrated on ACq([0, 1],X). Given any
t ∈ [0, 1] and a Borel set E ⊆ X, we have

(et)#η(E) = η(e−1
t (E)) ≤

∞∑
k=1

πk(e−1
t (E))

2k Comp(πk)
≤ m(E)

∞∑
k=1

1

2k
= m(E),

whence πq satisfies item (i) of Definition 1.8. Moreover, observe that

� 1�

0

|γ̇t|q dtdη(γ) ≤
∑
k∈N:

KEq(πk)>0

1

2k KEq(πk)

� 1�

0

|γ̇t|q dt dπk(γ) ≤
∞∑
k=1

1

2k
= 1,

thus accordingly πq has finite kinetic q-energy. All in all, πq is a q-test plan
on (X, d,m).

Finally, a given Borel subset of C([0, 1],X) is πq-negligible if and only if
it is πk-negligible for all k ∈ N, thus W 1,p

πq (X) = W 1,p
Π (X) and |Df |πq ,p =

|Df |Π,p for every f ∈ W 1,p
πq (X). Consequently, the statement follows from

(2.10).

Problem 2.7. Under the assumption of Theorem 2.6, does it hold that
W 1,p

πq (X) = W 1,p(X)? In other words, is the q-test plan πq sufficient to detect
which functions are Sobolev, and not only to identify the minimal p-relaxed
slope of those functions that are known to be Sobolev?

A positive answer to the above question is known, for instance, in the
Euclidean space (and, similarly, on Riemannian manifolds). Indeed, in this
case the original approach to weakly differentiable functions pioneered by
B. Levi [19] shows that to look at the behaviour along coordinate directions
is sufficient to distinguish the Sobolev functions; by building upon this result,
one can find a master q-test plan on Rn for which W 1,p

πq (Rn) = W 1,p(Rn).
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3. Master test plans on RCD spaces. The aim of this section is to
improve Theorem 2.6 in the case in which the space (X, d,m) under consid-
eration is an RCD(K,∞) space for some K ∈ R. An RCD(K,∞) space is
an infinitesimally Hilbertian space whose Ricci curvature is bounded from
below by K, in a synthetic sense. For an account of this theory, we refer
to [1] and the references therein.

An important feature of RCD(K,∞) spaces is the presence of a vast class
of ‘highly regular’ functions, which are referred to as the test functions. In
order to introduce them, we first need to recall the notion of Laplacian: we
declare that f ∈ W 1,2(X) belongs to D(∆) provided there exists a (uniquely
determined) function ∆f ∈ L2(m) such that

�
g∆f dm = −

�
⟨∇2g,∇2f⟩ dm for every g ∈ W 1,2(X).

With this said, we are in a position to define

Test∞(X) := {f ∈ D(∆) ∩ L∞(m) | |Df |2, ∆f ∈ L∞(m), ∆f ∈ W 1,2(X)}.

As proven in [21, 12], the family Test∞(X) is strongly dense in the Sobolev
space W 1,2(X).

We also point out that for any q ∈ (1,∞) we have

(3.1) RCD(K,∞) spaces are q-infinitesimally strictly convex.

Albeit expected, this property is far from being trivial. The reason is that,
as we recalled in Remark 1.3, minimal p-relaxed slopes might depend on p.
However, this issue cannot occur in the class of RCD(K,N) spaces, where
for any p, p′ ∈ (1,∞) we can see that

(3.2) |Df |p = |Df |p′ m-a.e. for every f ∈ W 1,p(X) ∩W 1,p′(X).

If N is finite, then the space X is (locally uniformly) doubling and satisfies a
(weak, local) Poincaré inequality, thus (3.2) follows from the results of [7]. In
the infinite-dimensional case, it is proven in [14]. With (3.2) at our disposal,
we can argue in the following way: By combining the 2-infinitesimal strict
convexity of RCD spaces with (3.2), we deduce that for any p ∈ (1,∞)
the identity in (1.3) is satisfied whenever f, g ∈ W 1,p(X) ∩ W 1,2(X); cf.
the discussion at the beginning of [11, Section 3.1]. By an approximation
argument, we can thus conclude that (1.3) holds for all f, g ∈ W 1,p(X),
whence the claimed property (3.1) follows.

Additionally, the same reasoning shows, for any p ∈ (1,∞), that

(3.3) dpf(∇pg) = dpg(∇pf) m-a.e. for all f, g ∈ W 1,p(X).

3.1. Regular Lagrangian flow. Another important ingredient that
we will need to prove Theorem 3.4 is the notion of regular Lagrangian flow,
which (in the metric setting) has been introduced by L. Ambrosio and D. Tre-
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visan [6]. The following result is only a very special case of a much more
general statement, but still it is sufficient for our purposes.

Theorem 3.1 (Regular Lagrangian flow [6]). Let (X, d,m) be an
RCD(K,∞) space for some constant K ∈ R. Let f ∈ Test∞(X). Then
there exists a (m-a.e. uniquely determined) regular Lagrangian flow F· : X →
C([0, 1],X) associated with ∇f , which means that:

(i) The map F· : X → C([0, 1],X) is Borel and satisfies F0(x) = x for
m-a.e. x ∈ X.

(ii) There exists a constant L> 0 such that (Ft)#m≤Lm for every t∈ [0, 1].
(iii) Given any p∈ (1,∞) and g ∈W 1,p(X), the function [0, 1]∋ t 7→ g(Ft(x))

belongs to W 1,1(0, 1) for m-a.e. x∈X and

(3.4)
d

dt
g(Ft(x)) = dpg(∇pf)(Ft(x)) for (m⊗ L1)-a.e. (x, t).

Let us spend a few words about both the statement and the proof of
Theorem 3.1:

Remark 3.2. Observe that item (ii) is meaningful since the map
[0, 1]×X ∋ (t, x) 7→ Ft(x) ∈ X is Borel (as it is a Carathéodory function),
thus in particular X ∋ x 7→ Ft(x) ∈ X is Borel for every t ∈ [0, 1]. Moreover,
item (iii) is well-posed thanks to item (ii): given that dpg(∇pf) is defined
m-a.e. and (Ft)#m ≪ m, we see that dpg(∇pf) ◦Ft is defined m-a.e. as well.

Moreover, we point out that the formulation presented above is taken
from [13], where only the case p = 2 is considered. The case of an arbitrary
exponent p ∈ (1,∞) can be deduced as follows. Fix any g ∈ W 1,p(X). A stan-
dard cut-off argument shows that W 1,p(X) ∩W 1,2(X) is dense in W 1,p(X),
thus we can find a sequence (gn)n ⊆ W 1,p(X) ∩W 1,2(X) such that gn → g
in W 1,p(X). In particular, gn → g in Lp(m) and dpgn → dpg in Lp(T ∗X), so
that (by taking item (ii) of Theorem 3.1 into account) we obtain

lim
n→∞

�
|gn(Ft(x))− g(Ft(x))|p d(m⊗ L1)(x, t) = 0,

lim
n→∞

�
|dpgn(∇pf)(Ft(x))− dpg(∇pf)(Ft(x))|d(m⊗ L1)(x, t) = 0.

Therefore, up to a subsequence (not relabelled) in n, for m-a.e. x ∈ X,

(3.5)

lim
n→∞

1�

0

|gn(Ft(x))− g(Ft(x))|p dt = 0,

lim
n→∞

1�

0

|dpgn(∇pf)(Ft(x))− dpg(∇pf)(Ft(x))| dt = 0.

Given that dpgn(∇pf) = ⟨∇2gn,∇2f⟩ holds m-a.e. for every n ∈ N by (3.2),
we see that each function gn satisfies item (iii) of Theorem 3.1. By virtue of
(3.5), so does g. Hence, Theorem 3.1 is proved for every p ∈ (1,∞).
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Given any measure µ ∈ P(X) such that µ ≤ Cm for some constant
C > 0, we see that

(3.6) π := (F·)#µ is an ∞-test plan on X.

In particular, given any p, q ∈ (1,∞) with 1/p+1/q = 1, we deduce that π is
a q-test plan on X, thus we can consider its p-velocity π′ ∈ (e∗Lp(T ∗X))∗ ∼=
e∗Lq(TX). Therefore π′ = e∗∇pf ; we refer to [13] for more details.

3.2. Existence of master test plans on RCD spaces. To begin with,
we show that the regularity result in Proposition 1.23 can be sharpened when
the test plan is induced by a regular Lagrangian flow (in the sense of (3.6)
above):

Lemma 3.3. Let (X, d,m) be an RCD(K,∞) space for some K ∈ R.
Let f ∈ Test∞(X). Denote by F· the regular Lagrangian flow associated
with ∇f . Let µ ∈ P(X) be such that µ ≤ Cm for some C > 0 and de-
fine π := (F·)#µ. Then for any exponent p ∈ (1,∞) and any g ∈ W 1,p(X)
the map [0, 1] ∋ t 7→ g ◦ et ∈ L1(π) is of class C1 and

d

dt
g ◦ et = dpg(∇pf) ◦ et for every t ∈ [0, 1].

Proof. We know from Proposition 1.23 that the curve [0, 1] ∋ t 7→ g ◦ et
∈ L1(π) is absolutely continuous and its L1(π)-strong derivative coincides
at L1-a.e. t ∈ [0, 1] with

Dt := π′(e∗dpg)(·, t) = (e∗dpg)(e
∗∇pf)(·, t) = dpg(∇pf) ◦ et.

Since [0, 1] ∋ t 7→ Dt ∈ L1(π) is continuous by Proposition 1.10, the state-
ment follows.

We are now in a position to prove our existence result. Even though the
ideas are very similar to those employed in the proof of Theorem 2.6, we still
prefer to write down the whole argument since it presents many technical
simplifications.

Theorem 3.4 (Master test plans onRCD spaces).Consider anRCD(K,∞)
space (X, d,m), for some K ∈ R. Then there exists an ∞-test plan π∞ on
(X, d,m) that is a master q-test plan for every exponent q ∈ (1,∞).

Proof. First of all, fix a countable family C ⊆ Test∞(X) that is strongly
dense in W 1,p(X) for every p ∈ (1,∞), whose existence can be proven by
combining the properties of the heat flow on (X, d,m) with a cut-off argu-
ment. Choose any m̃ ∈ P(X) such that m ≪ m̃ ≤ Cm for some C > 0 (recall
Remark 1.1). Given any f ∈ C, we write F f

· for the regular Lagrangian flow
associated with ∇f and we set πf := (F f

· )#m̃. Define Π := {πf | f ∈ C}.
We claim that

(3.7) |Df |Π,p = |Df |p for every p ∈ (1,∞) and f ∈ W 1,p(X).
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Given that |Df |Π,p ≤ |Df |p holds m-a.e. by Proposition 1.16, it is just
sufficient to show the inequality

	
|Df |pp dm̃ ≤

	
|Df |pΠ,p dm̃. To this end, fix

a sequence (fn)n ⊆ C with fn → f strongly in W 1,p(X). In particular, up to
taking a subsequence (not relabelled) in n, we may assume that dpfn → dpf
strongly in Lp(T ∗X) and |Dfn|p → |Df |p strongly in Lp(m̃). For brevity, let
us denote πn := πfn for every n ∈ N. Notice that (e0)#πn = (F fn

0 )#m̃ = m̃,
so Lemma 3.3 and the dominated convergence theorem yield
�
|Df |pp dm̃ =

�
dpf(∇pf) dm̃

= lim
n→∞

�
dpfn(∇pf) dm̃

(3.3)
= lim

n→∞

�
dpf(∇pfn) dm̃

= lim
n→∞

�
dpf(∇pfn) ◦ e0 dπn = lim

n→∞
lim
t↘0

� f ◦ et − f ◦ e0
t

dπn

≤ lim
n→∞

lim
t↘0

� |f(γt)− f(γ0)|
t

dπn(γ)

≤ lim
n→∞

lim
t↘0

� t�

0

|Df |Π,p(γs)|γ̇s|ds dπn(γ)

≤ lim
n→∞

lim
t↘0

( � t�

0

|Df |pΠ,p ◦ es ds dπ
n
)1/p( � t�

0

|(πn)′|q(·, s) ds dπn
)1/q

= lim
n→∞

lim
t↘0

( t�

0

∥∥|Df |Π,p ◦ es
∥∥p
Lp(πn)

ds
)1/p( t�

0

∥∥|∇pfn| ◦ es
∥∥q
Lq(πn)

ds
)1/q

= lim
n→∞

( �
|Df |pΠ,p ◦ e0 dπ

n
)1/p( �

|∇pfn|q ◦ e0 dπn
)1/q

= lim
n→∞

( �
|Df |pΠ,p ◦ e0 dπ

n
)1/p( �

|Dfn|pp ◦ e0 dπn
)1/q

=
( �

|Df |pΠ,p dm̃
)1/p

lim
n→∞

( �
|Dfn|pp dm̃

)1/q

=
( �

|Df |pΠ,p dm̃
)1/p( �

|Df |pp dm̃
)1/q

,

where (πn)′ stands for the p-velocity of the q-test plan πn. Therefore, the
claimed identity (3.7) is satisfied.

In order to conclude, it remains to pass from the countable family Π to
a single ∞-test plan π∞. We proceed as follows: Define Π := (πk)k. Given
any k ∈ N, there exists nk ∈ N such that πk is concentrated on nk-Lipschitz
curves. Then let

πk,i := (restr
i/nk

(i−1)/nk
)#π

k for every i = 1, . . . , nk.

Therefore, πk,1, . . . ,πk,nk are ∞-test plans concentrated on 1-Lipschitz
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curves. Observe also that the family

Π ′ := {πk,i | k ∈ N, i = 1, . . . , nk}

satisfies W 1,p
Π′ (X) = W 1,p

Π (X) and |Df |Π′,p = |Df |Π,p for every p ∈ (1,∞)

and f ∈ W 1,p
Π′ (X). Finally, let

η :=
∞∑
k=1

nk∑
i=1

πk,i

2k+imax{Comp(πk,i), 1}
, π∞ :=

η

η(C([0, 1],X))
.

By arguing as we did in Step 3 of the proof of Theorem 2.6, we can see
that π∞ is an ∞-test plan (concentrated on 1-Lipschitz curves). Given that
W 1,p

π∞(X) = W 1,p
Π′ (X) and |Df |π∞,p = |Df |Π′,p for every p ∈ (1,∞) and

f ∈ W 1,p
π∞(X), the statement follows from the identity (3.7).

Remark 3.5. We point out that every ∞-test plan π induced by the
regular Lagrangian flow associated with ∇f , as in (3.6), q-represents the
gradient of f for every q ∈ (1,∞).

Indeed, for (π ⊗ L1)-a.e. (γ, t) we have

|γ̇t| = |π′|(γ, t) = |e∗∇pf |(γ, t) = |Df |p/qp (γt)

and d
dtf(γt) = |Df |pp(γt), whence

Eq,t(γ)

t
=

( t�

0

|γ̇s|q ds
)1/q

=
( t�

0

|Df |pp ◦ es ds
)1/q

(γ),

(
f ◦ et − f ◦ e0

Eq,t

)
(γ) =

t

Eq,t(γ)

t�

0

d

ds
f(γs) ds =

t

Eq,t(γ)

t�

0

|Df |pp(γs) ds

=
( t�

0

|Df |pp ◦ es ds
)1/p

(γ)

for every t ∈ (0, 1) and π-a.e. γ. By recalling Proposition 1.10, we conclude
that the plan π q-represents the gradient of f , as claimed above. This means
that Theorem 3.4 could have been alternatively proven by directly using the
proof of Theorem 2.6.

Remark 3.6. A necessary condition for a statement as the one of Theo-
rem 3.4 to hold is the fact that minimal p-weak upper gradients are indepen-
dent of p. Hence, by recalling Remark 1.3, we see that Theorem 3.4 cannot
be generalised to arbitrary metric measure spaces.
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