Show simple item record

dc.contributor.authorKorpelin, Ville
dc.contributor.authorKiljunen, Toni
dc.contributor.authorMelander, Marko M.
dc.contributor.authorCaro, Miguel A.
dc.contributor.authorKristoffersen, Henrik H.
dc.contributor.authorMammen, Nisha
dc.contributor.authorApaja, Vesa
dc.contributor.authorHonkala, Karoliina
dc.date.accessioned2022-03-21T08:01:52Z
dc.date.available2022-03-21T08:01:52Z
dc.date.issued2022
dc.identifier.citationKorpelin, V., Kiljunen, T., Melander, M. M., Caro, M. A., Kristoffersen, H. H., Mammen, N., Apaja, V., & Honkala, K. (2022). Addressing Dynamics at Catalytic Heterogeneous Interfaces with DFT-MD : Anomalous Temperature Distributions from Commonly Used Thermostats. <i>Journal of Physical Chemistry Letters</i>, <i>13</i>(11), 2644-2652. <a href="https://doi.org/10.1021/acs.jpclett.2c00230" target="_blank">https://doi.org/10.1021/acs.jpclett.2c00230</a>
dc.identifier.otherCONVID_104668333
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/80252
dc.description.abstractDensity functional theory-based molecular dynamics (DFT-MD) has been widely used for studying the chemistry of heterogeneous interfacial systems under operational conditions. We report frequently overlooked errors in thermostated or constant-temperature DFT-MD simulations applied to study (electro)catalytic chemistry. Our results demonstrate that commonly used thermostats such as Nose−Hoover, Berendsen, and simple velocity rescaling methods fail to provide are liable temperature description for systems considered. Instead, nonconstant temperatures and large temperature gradients within the different parts of the system are observed. The errors are not a “feature” of any particular code but a represent in several ab initio molecular dynamics implementations. This uneven temperature distribution, due to inadequate thermostatting, is well-known in the classical MD community, where it is ascribed to the failure in kinetic energy equipartition among different degrees of freedom in heterogeneous systems (Harvey et al. J. Comput. Chem. 1998, 726−740) and termed the flying ice cube effect. We provide tantamount evidence that interfacial systems are susceptible to substantial flying ice cube effects and demonstrate that the traditional Nose−Hoover and Berendsen thermostats should be applied with care when simulating, for example, catalytic properties or structures of solvated interfaces and supported clusters. We conclude that the flying ice cube effect in these systems can be conveniently avoided using Langevin dynamics.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Chemical Society (ACS)
dc.relation.ispartofseriesJournal of Physical Chemistry Letters
dc.rightsCC BY 4.0
dc.titleAddressing Dynamics at Catalytic Heterogeneous Interfaces with DFT-MD : Anomalous Temperature Distributions from Commonly Used Thermostats
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202203211948
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineFysikaalinen kemiafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineResurssiviisausyhteisöfi
dc.contributor.oppiainePhysical Chemistryen
dc.contributor.oppiaineNanoscience Centeren
dc.contributor.oppiaineSchool of Resource Wisdomen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange2644-2652
dc.relation.issn1948-7185
dc.relation.numberinseries11
dc.relation.volume13
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 The Authors. Published by American Chemical Society
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber317739
dc.relation.grantnumber307853
dc.relation.grantnumber332290
dc.relation.grantnumber338228
dc.relation.grantnumber5482-2a4a9
dc.subject.ysotiheysfunktionaaliteoria
dc.subject.ysomolekyylidynamiikka
dc.subject.ysolämmönsäätimet
dc.subject.ysokemia
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p28852
jyx.subject.urihttp://www.yso.fi/onto/yso/p29332
jyx.subject.urihttp://www.yso.fi/onto/yso/p3347
jyx.subject.urihttp://www.yso.fi/onto/yso/p1801
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1021/acs.jpclett.2c00230
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderJane and Aatos Erkko Foundationen
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderJane ja Aatos Erkon säätiöfi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramPostdoctoral Researcher, AoFen
jyx.fundingprogramPostdoctoral Researcher, AoFen
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramFoundationen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramTutkijatohtori, SAfi
jyx.fundingprogramTutkijatohtori, SAfi
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundingprogramSäätiöfi
jyx.fundinginformationThe project was funded by the Academy of Finland projects 307853 (M.M.M.), 338228 (M.M.M.), 310574 (M.A.C.), 330488 (M.A.C.), 317739 (M.M.M., N.M., and K.H.), and 332290 (N.M.). M.M.M. and K.H. also acknowledge Jane and Aatos Erkko Foundation for funding to the LACOR project.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0