2023 Roadmap on molecular modelling of electrochemical energy materials
Zhang, C., Cheng, J., Chen, Y., Chan, M. K. Y., Cai, Q., Carvalho, R. P., Marchiori, C. F. N., Brandell, D., Araujo, C. M., Chen, M., Ji, X., Feng, G., Goloviznina, K., Serva, A., Salanne, M., Mandai, T., Hosaka, T., Alhanash, M., Johansson, P., . . . Sundararaman, R. (2023). 2023 Roadmap on molecular modelling of electrochemical energy materials. JPhys Energy, 5(4), Article 041501. https://doi.org/10.1088/2515-7655/acfe9b
Published in
JPhys EnergyAuthors
Date
2023Discipline
Fysikaalinen kemiaNanoscience CenterKemiaResurssiviisausyhteisöPhysical ChemistryNanoscience CenterChemistrySchool of Resource WisdomCopyright
© 2023 The Author(s). Published by IOP Publishing Ltd
New materials for electrochemical energy storage and conversion are the key to the electrification and sustainable development of our modern societies. Molecular modelling based on the principles of quantum mechanics and statistical mechanics as well as empowered by machine learning techniques can help us to understand, control and design electrochemical energy materials at atomistic precision. Therefore, this roadmap, which is a collection of authoritative opinions, serves as a gateway for both the experts and the beginners to have a quick overview of the current status and corresponding challenges in molecular modelling of electrochemical energy materials for batteries, supercapacitors, CO2 reduction reaction, and fuel cell applications.
Publisher
IOP PublishingISSN Search the Publication Forum
2515-7655Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/194675543
Metadata
Show full item recordCollections
Additional information about funding
This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant Agreement No. 949012). This work was partially supported by the Wallenberg Initiative Materials Science for Sustainability (WISE) funded by the Knut and Alice Wallenberg Foundation (KAW). J C is grateful for the funding support from the National Natural Science Foundation of China (Grant Nos. 21861132015, 21991151, 21991150 and 22021001). ...License
Related items
Showing items with similar title or keywords.
-
Grand canonical ensemble approach to electrochemical thermodynamics, kinetics, and model Hamiltonians
Melander, Marko M. (Elsevier, 2021)The unique feature of electrochemistry is the ability to control reaction thermodynamics and kinetics by the application of electrode potential. Recently, theoretical methods and computational approaches within the grand ... -
Metal–water interface formation : Thermodynamics from ab initio molecular dynamics simulations
Domínguez-Flores, Fabiola; Kiljunen, Toni; Groß, Axel; Sakong, Sung; Melander, Marko M. (AIP Publishing, 2024)Metal–water interfaces are central to many electrochemical, (electro)catalytic, and materials science processes and systems. However, our current understanding of their thermodynamic properties is limited by the scarcity ... -
Synergistic Bimetallic PdNi Nanoparticles : Enhancing Glycerol Electrooxidation While Preserving C3 Product Selectivity
White, Jai; Terekhina, Irina; Campos dos Santos, Egon; Martín-Yerga, Daniel; Pettersson, Lars G. M.; Johnsson, Mats; Cornell, Ann (American Chemical Society (ACS), 2024)Electrochemical conversion of glycerol offers a promising route to synthesize value-added glycerol oxidation products (GOPs) from an abundant biomass-based resource. While noble metals provide a low overpotential for the ... -
Frozen or dynamic? : An atomistic simulation perspective on the timescales of electrochemical reactions
Melander, Marko M. (Elsevier BV, 2023)Electrochemical systems span a wide range of timescales, and several recent works have put forth the idea that the reaction environment should remain frozen and out of equilibrium during electrochemical electron or proton ... -
A Self-Consistent Charge Density-Functional Tight-Binding Parameterization for Pt-Ru Alloys
Shi, Hongbo; Koskinen, Pekka; Ramasubramaniam, Ashwin (American Chemical Society, 2017)We present a self-consistent charge density-functional tight-binding (SCC-DFTB) parametrization for PtRu alloys, which is developed by employing a training set of alloy cluster energies and forces obtained from Kohn–Sham ...