The “Seili-index” for the Prediction of Chlorophyll-α Levels in the Archipelago Sea of the northern Baltic Sea, southwest Finland
Hänninen, J., Mäkinen, K., Nordhausen, K., Laaksonlaita, J., Loisa, O., & Virta, J. (2022). The “Seili-index” for the Prediction of Chlorophyll-α Levels in the Archipelago Sea of the northern Baltic Sea, southwest Finland. Environmental Modeling and Assessment, 27(4), 571-584. https://doi.org/10.1007/s10666-022-09822-9
Julkaistu sarjassa
Environmental Modeling and AssessmentTekijät
Päivämäärä
2022Tekijänoikeudet
© The Author(s) 2022
To build a forecasting tool for the state of eutrophication in the Archipelago Sea, we fitted a Generalized Additive Mixed Model (GAMM) to marine environmental monitoring data, which were collected over the years 2011–2019 by an automated profiling buoy at the Seili ODAS-station. The resulting “Seili-index” can be used to predict the chlorophyll-α (chl-a) concentration in the seawater a number of days ahead by using the temperature forecast as a covariate. An array of test predictions with two separate models on the 2019 data set showed that the index is adept at predicting the amount of chl-a especially in the upper water layer. The visualization with 10 days of chl-a level predictions is presented online at https://saaristomeri.utu.fi/seili-index/. We also applied GAMMs to predict abrupt blooms of cyanobacteria on the basis of temperature and wind conditions and found the model to be feasible for short-term predictions. The use of automated monitoring data and the presented GAMM model in assessing the effects of natural resource management and pollution risks is discussed.
...
Julkaisija
Springer Science and Business Media LLCISSN Hae Julkaisufoorumista
1420-2026Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/104479772
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
The work of Joni Virta, Ph.D., was supported by the Academy of Finland (Grant 335077).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Interacting effects of simulated eutrophication, temperature increase, and microplastic exposure on Daphnia
Hiltunen, Minna; Vehniäinen, Eeva-Riikka; Kukkonen, Jussi V. K. (Elsevier BV, 2021)The effects of multiple stressors are difficult to separate in field studies, and their interactions may be hard to predict if studied in isolation. We studied the effects of decreasing food quality (increase in cyanobacteria ... -
Effect of variable selection strategy on the predictive models for adverse pregnancy outcomes of pre-eclampsia : A retrospective study
Zheng, Dongying; Hao, Xinyu; Khan, Muhanmmad; Kang, Fuli; Li, Fan; Hämäläinen, Timo; Wang, Lixia (Scholar Media Publishing Company, 2024)Objectives: The improvement of prediction for adverse pregnancy outcomes is quite essential to the women suffering from pre-eclampsia, while the collection of predictive indicators is the prerequisite. The traditional ... -
Species distributions models may predict accurately future distributions but poorly how distributions change : A critical perspective on model validation
Piirainen, Sirke; Lehikoinen, Aleksi; Husby, Magne; Kålås, John Atle; Lindström, Åke; Ovaskainen, Otso (Wiley, 2023)Aim Species distribution models (SDMs) are widely used to make predictions on how species distributions may change as a response to climatic change. To assess the reliability of those predictions, they need to be critically ... -
Adaptation to fluctuations in temperature by nine species of bacteria
Saarinen, Kati; Laakso, Jouni; Lindström, Leena; Ketola, Tarmo (Blackwell Publishing Ltd, 2018)Rapid environmental fluctuations are ubiquitous in the wild, yet majority of experimental studies mostly consider effects of slow fluctuations on organism. To test the evolutionary consequences of fast fluctuations, we ... -
Predicting Children's Myopia Risk : A Monte Carlo Approach to Compare the Performance of Machine Learning Models
Artiemjew, Piotr; Cybulski, Radosław; Emamian, Mohammad; Grzybowski, Andrzej; Jankowski, Andrzej; Lanca, Carla; Mehravaran, Shiva; Młyński, Marcin; Morawski, Cezary; Nordhausen, Klaus; Pärssinen, Olavi; Ropiak, Krzysztof (SCITEPRESS Science and Technology Publications, 2024)This study presents the initial results of the Myopia Risk Calculator (MRC) Consortium, introducing an innovative approach to predict myopia risk by using trustworthy machine-learning models. The dataset included approximately ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.