dc.contributor.author | Hänninen, Jari | |
dc.contributor.author | Mäkinen, Katja | |
dc.contributor.author | Nordhausen, Klaus | |
dc.contributor.author | Laaksonlaita, Jussi | |
dc.contributor.author | Loisa, Olli | |
dc.contributor.author | Virta, Joni | |
dc.date.accessioned | 2022-03-03T08:16:58Z | |
dc.date.available | 2022-03-03T08:16:58Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Hänninen, J., Mäkinen, K., Nordhausen, K., Laaksonlaita, J., Loisa, O., & Virta, J. (2022). The “Seili-index” for the Prediction of Chlorophyll-α Levels in the Archipelago Sea of the northern Baltic Sea, southwest Finland. <i>Environmental Modeling and Assessment</i>, <i>27</i>(4), 571-584. <a href="https://doi.org/10.1007/s10666-022-09822-9" target="_blank">https://doi.org/10.1007/s10666-022-09822-9</a> | |
dc.identifier.other | CONVID_104479772 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/80053 | |
dc.description.abstract | To build a forecasting tool for the state of eutrophication in the Archipelago Sea, we fitted a Generalized Additive Mixed Model (GAMM) to marine environmental monitoring data, which were collected over the years 2011–2019 by an automated profiling buoy at the Seili ODAS-station. The resulting “Seili-index” can be used to predict the chlorophyll-α (chl-a) concentration in the seawater a number of days ahead by using the temperature forecast as a covariate. An array of test predictions with two separate models on the 2019 data set showed that the index is adept at predicting the amount of chl-a especially in the upper water layer. The visualization with 10 days of chl-a level predictions is presented online at https://saaristomeri.utu.fi/seili-index/. We also applied GAMMs to predict abrupt blooms of cyanobacteria on the basis of temperature and wind conditions and found the model to be feasible for short-term predictions. The use of automated monitoring data and the presented GAMM model in assessing the effects of natural resource management and pollution risks is discussed. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer Science and Business Media LLC | |
dc.relation.ispartofseries | Environmental Modeling and Assessment | |
dc.rights | CC BY 4.0 | |
dc.subject.other | Saaristomeri | |
dc.subject.other | chlorophyll | |
dc.subject.other | cyanobacteria | |
dc.subject.other | temperature | |
dc.subject.other | wind | |
dc.subject.other | profling buoy | |
dc.subject.other | Generalized Additive Mixed Model (GAMM) | |
dc.title | The “Seili-index” for the Prediction of Chlorophyll-α Levels in the Archipelago Sea of the northern Baltic Sea, southwest Finland | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202203031768 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 571-584 | |
dc.relation.issn | 1420-2026 | |
dc.relation.numberinseries | 4 | |
dc.relation.volume | 27 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © The Author(s) 2022 | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | ympäristö | |
dc.subject.yso | mallit (mallintaminen) | |
dc.subject.yso | vesistöt | |
dc.subject.yso | mallintaminen | |
dc.subject.yso | merivesi | |
dc.subject.yso | meret | |
dc.subject.yso | ympäristövaikutukset | |
dc.subject.yso | ennusteet | |
dc.subject.yso | lämpötila | |
dc.subject.yso | klorofylli | |
dc.subject.yso | syanobakteerit | |
dc.subject.yso | vaikutukset | |
dc.subject.yso | rehevöityminen | |
dc.subject.yso | ennustettavuus | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p6033 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p510 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p1157 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3533 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3794 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p8444 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p9862 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3297 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2100 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3007 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3324 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p795 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p11509 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p9701 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1007/s10666-022-09822-9 | |
jyx.fundinginformation | The work of Joni Virta, Ph.D., was supported by the Academy of Finland (Grant 335077). | |
dc.type.okm | A1 | |