Adaptation to fluctuations in temperature by nine species of bacteria
Saarinen, K., Laakso, J., Lindström, L., & Ketola, T. (2018). Adaptation to fluctuations in temperature by nine species of bacteria. Ecology and Evolution, 8(5), 2901-2910. https://doi.org/10.1002/ece3.3823
Julkaistu sarjassa
Ecology and EvolutionPäivämäärä
2018Tekijänoikeudet
© 2018 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article distributed under the terms of the Creative Commons License.
Rapid environmental fluctuations are ubiquitous in the wild, yet majority of experimental studies mostly consider effects of slow fluctuations on organism. To test the evolutionary consequences of fast fluctuations, we conducted nine independent experimental evolution experiments with bacteria. Experimental conditions were same for all species, and we allowed them to evolve either in fluctuating temperature alternating rapidly between 20°C and 40°C or at constant 30°C temperature. After experimental evolution, we tested the performance of the clones in both rapid fluctuation and in constant environments (20°C, 30°C and 40°C). Results from experiments on these nine species were combined meta-analytically. We found that overall the clones evolved in the fluctuating environment had evolved better efficiency in tolerating fluctuations (i.e., they had higher yield in fluctuating conditions) than the clones evolved in the constant environment. However, we did not find any evidence that fluctuation-adapted clones would have evolved better tolerance to any measured constant environments (20°C, 30°C, and 40°C). Our results back up recent empirical findings reporting that it is hard to predict adaptations to fast fluctuations using tolerance curves. © 2018 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
...
Julkaisija
Blackwell Publishing LtdISSN Hae Julkaisufoorumista
2045-7758Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/27900603
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiatutkija, SALisätietoja rahoituksesta
We thank the Biological Interactions Doctoral Programme and the University of Jyväskylä Doctoral Programme in Biological and Environmental Science (KS), Academy of Finland Projects 278751 (TK), 1255572 (JL), 250248 (LL), and Centre of Excellence in Biological Interactions for funding and facilities.Lisenssi
Ellei muuten mainita, aineiston lisenssi on © 2018 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article distributed under the terms of the Creative Commons License.
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
The evolution of temperature tolerance and invasiveness in a fluctuating thermal environment
Saarinen, Kati (University of Jyväskylä, 2016)The consequences of the climate change on species are still uncertain, despite of intensive research. Currently, rising temperature is not the only concern, since the climate change scenarios also predict increases in ... -
Survival and gene expression under different temperature and humidity regimes in ants
Stucki, Dimitri; Freitak, Dalial; Sundström, Liselotte (Public Library of Science, 2017)Short term variation in environmental conditions requires individuals to adapt via changes in behavior and/or physiology. In particular variation in temperature and humidity are common, and the physiological adaptation to ... -
Effect of temperature change on bacterial virulence
Chen, Zihan (2018)Abiotic factors such as temperature can influence the evolution of the pathogens, but empirical evidence on this is very scarce. The pathogen Serratia marcescens, which had evolved under three different temperature treatments ... -
The speed of environmental change affects the likelihood of evolutionary rescue in Serratia marcescens
Liukkonen, Martta (2020)Ilmastonmuutoksen kiihtyessä ja ihmisen aiheuttamien ympäristövaikutusten laajentuessa lajien on sopeuduttava yhä nopeammin. Jos populaatiolla ei ole fenotyyppistä plastisuutta tai mahdollisuutta siirtyä uudelle alueelle, ... -
Responses to Developmental Temperature Fluctuation in Life History Traits of Five Drosophila Species (Diptera: Drosophilidae) from Different Thermal Niches
Manenti, Tommaso; Kjærsgaard, Anders; Munk Schou, Toke; Pertoldi, Cino; Moghadam, Neda N.; Loeschcke, Volker (MDPI AG, 2021)Temperature has profound effects on biochemical processes as suggested by the extensive variation in performance of organisms across temperatures. Nonetheless, the use of fluctuating temperature (FT) regimes in laboratory ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.