Näytä suppeat kuvailutiedot

dc.contributor.authorKow, Pu-Zhao
dc.contributor.authorUhlmann, Gunther
dc.contributor.authorWang, Jenn-Nan
dc.date.accessioned2022-02-07T06:47:40Z
dc.date.available2022-02-07T06:47:40Z
dc.date.issued2021
dc.identifier.citationKow, P.-Z., Uhlmann, G., & Wang, J.-N. (2021). Optimality of Increasing Stability for an Inverse Boundary Value Problem. <i>SIAM Journal on Mathematical Analysis</i>, <i>53</i>(6), 7062-7080. <a href="https://doi.org/10.1137/21M1402169" target="_blank">https://doi.org/10.1137/21M1402169</a>
dc.identifier.otherCONVID_104140203
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/79644
dc.description.abstractIn this work we study the optimality of increasing stability of the inverse boundary value problem (IBVP) for the Schrödinger equation. The rigorous justification of increasing stability for the IBVP for the Schrödinger equation were established by Isakov [Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), pp. 631--640] and by Isakov et al. [Inverse Problems and Applications, Contemp. Math. 615, American Math Society, Providence, RI, 2014, pp. 131--141]. In [Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), pp. 631--640] and [Inverse Problems and Applications, Contemp. Math. 615, American Math Society, Providence, RI, 2014, pp. 131--141], the authors showed that the stability of this IBVP increases as the frequency increases in the sense that the stability estimate changes from a logarithmic type to a Hölder type. In this work, we prove that the instability changes from an exponential type to a Hölder type when the frequency increases. This result verifies that results in [Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), pp. 631--640] and [Inverse Problems and Applications, Contemp. Math. 615, American Math Society, Providence, RI, 2014, pp. 131--141] are optimal.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSociety for Industrial & Applied Mathematics (SIAM)
dc.relation.ispartofseriesSIAM Journal on Mathematical Analysis
dc.rightsIn Copyright
dc.subject.otherincreasing stability phenomena
dc.subject.otherinstability
dc.subject.otherinverse boundary value problem
dc.subject.otherSchrödinger equation
dc.titleOptimality of Increasing Stability for an Inverse Boundary Value Problem
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202202071402
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange7062-7080
dc.relation.issn0036-1410
dc.relation.numberinseries6
dc.relation.volume53
dc.type.versionacceptedVersion
dc.rights.copyright© 2021 Society for Industrial and Applied Mathematics
dc.rights.accesslevelopenAccessfi
dc.subject.ysoinversio-ongelmat
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p27912
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1137/21M1402169
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright