dc.contributor.author | Kow, Pu-Zhao | |
dc.contributor.author | Uhlmann, Gunther | |
dc.contributor.author | Wang, Jenn-Nan | |
dc.date.accessioned | 2022-02-07T06:47:40Z | |
dc.date.available | 2022-02-07T06:47:40Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Kow, P.-Z., Uhlmann, G., & Wang, J.-N. (2021). Optimality of Increasing Stability for an Inverse Boundary Value Problem. <i>SIAM Journal on Mathematical Analysis</i>, <i>53</i>(6), 7062-7080. <a href="https://doi.org/10.1137/21M1402169" target="_blank">https://doi.org/10.1137/21M1402169</a> | |
dc.identifier.other | CONVID_104140203 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/79644 | |
dc.description.abstract | In this work we study the optimality of increasing stability of the inverse boundary value problem (IBVP) for the Schrödinger equation. The rigorous justification of increasing stability for the IBVP for the Schrödinger equation were established by Isakov [Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), pp. 631--640] and by Isakov et al. [Inverse Problems and Applications, Contemp. Math. 615, American Math Society, Providence, RI, 2014, pp. 131--141]. In [Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), pp. 631--640] and [Inverse Problems and Applications, Contemp. Math. 615, American Math Society, Providence, RI, 2014, pp. 131--141], the authors showed that the stability of this IBVP increases as the frequency increases in the sense that the stability estimate changes from a logarithmic type to a Hölder type. In this work, we prove that the instability changes from an exponential type to a Hölder type when the frequency increases. This result verifies that results in [Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), pp. 631--640] and [Inverse Problems and Applications, Contemp. Math. 615, American Math Society, Providence, RI, 2014, pp. 131--141] are optimal. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Society for Industrial & Applied Mathematics (SIAM) | |
dc.relation.ispartofseries | SIAM Journal on Mathematical Analysis | |
dc.rights | In Copyright | |
dc.subject.other | increasing stability phenomena | |
dc.subject.other | instability | |
dc.subject.other | inverse boundary value problem | |
dc.subject.other | Schrödinger equation | |
dc.title | Optimality of Increasing Stability for an Inverse Boundary Value Problem | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202202071402 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 7062-7080 | |
dc.relation.issn | 0036-1410 | |
dc.relation.numberinseries | 6 | |
dc.relation.volume | 53 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2021 Society for Industrial and Applied Mathematics | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | inversio-ongelmat | |
dc.subject.yso | osittaisdifferentiaaliyhtälöt | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27912 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12392 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1137/21M1402169 | |
dc.type.okm | A1 | |