On arithmetic sums of Ahlfors-regular sets
Orponen, T. (2022). On arithmetic sums of Ahlfors-regular sets. Geometric and Functional Analysis, 32(1), 81-134. https://doi.org/10.1007/s00039-021-00589-x
Julkaistu sarjassa
Geometric and Functional AnalysisTekijät
Päivämäärä
2022Tekijänoikeudet
© 2022 the Authors
Let A,B⊂RA,B⊂R be closed Ahlfors-regular sets with dimensions dimHA=:αdimHA=:α and dimHB=:βdimHB=:β. I prove that dimH[A+θB]≥α+β⋅1−α2−αdimH[A+θB]≥α+β⋅1−α2−α for all θ∈R∖Eθ∈R∖E, where dimHE=0dimHE=0.
Julkaisija
BirkhäuserISSN Hae Julkaisufoorumista
1016-443XAsiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/103881631
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
T.O. is supported by the Academy of Finland via the projects Quantitative rectifiability in Euclidean and non-Euclidean spaces and Incidences on Fractals, grant Nos. 309365, 314172, 321896. T.O. is also supported by the University of Helsinki via the project Quantitative rectifiability of sets and measures in Euclidean spaces and Heisenberg groups, project No. 7516125.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On the discretised ABC sum-product problem
Orponen, Tuomas (American Mathematical Society, 2024)Let 0 < beta <= alpha < 1 and kappa > 0. I prove that there exists eta > 0 such that the following holds for every pair of Borel sets A, B subset of R with dim(H) A = alpha and dim(H) B = beta: dim(H) {c is an element of ... -
Combinatorial proofs of two theorems of Lutz and Stull
Orponen, Tuomas (Cambridge University Press (CUP), 2021)Recently, Lutz and Stull used methods from algorithmic information theory to prove two new Marstrand-type projection theorems, concerning subsets of Euclidean space which are not assumed to be Borel, or even analytic. One ... -
On the Hausdorff dimension of radial slices
Orponen, Tuomas (Suomen matemaattinen yhdistys, 2024)Let t∈(1,2), and let B⊂R2 be a Borel set with dimHB>t. I show that H1({e∈S1:dimH(B∩ℓx,e)≥t−1})>0 for all x∈R2∖E, where dimHE≤2−t. This is the sharp bound for dimHE. The main technical tool is an incidence inequality of the ... -
On the dimension of visible parts
Orponen, Tuomas (European Mathematical Society - EMS - Publishing House GmbH, 2023)I prove that the visible parts of a compact set in Rn, n≥2, have Hausdorff dimension at most n − 1/50n from almost every direction. -
On the Hausdorff dimension of Furstenberg sets and orthogonal projections in the plane
Orponen, Tuomas; Shmerkin, Pablo (Duke University Press, 2023)Let 0 s 1 and 0 t 2. An .s;t/-Furstenberg set is a set K R2 with the following property: there exists a line set L of Hausdorff dimension dimH L t such that dimH.K \ `/ s for all ` 2 L. We prove that for s 2 .0;1/ and ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.