Näytä suppeat kuvailutiedot

dc.contributor.authorZhao, Wei
dc.contributor.authorLi, Huanjie
dc.contributor.authorHao, Yuxing
dc.contributor.authorHu, Guoqiang
dc.contributor.authorZhang, Yunge
dc.contributor.authorFrederick, Blaise de B.
dc.contributor.authorCong, Fengyu
dc.date.accessioned2022-01-11T11:21:12Z
dc.date.available2022-01-11T11:21:12Z
dc.date.issued2022
dc.identifier.citationZhao, W., Li, H., Hao, Y., Hu, G., Zhang, Y., Frederick, B. D. B., & Cong, F. (2022). An efficient functional magnetic resonance imaging data reduction strategy using neighborhood preserving embedding algorithm. <i>Human Brain Mapping</i>, <i>43</i>(5), 1561-1576. <a href="https://doi.org/10.1002/hbm.25742" target="_blank">https://doi.org/10.1002/hbm.25742</a>
dc.identifier.otherCONVID_103624490
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/79295
dc.description.abstractHigh dimensionality data have become common in neuroimaging fields, especially group-level functional magnetic resonance imaging (fMRI) datasets. fMRI connectivity analysis is a widely used, powerful technique for studying functional brain networks to probe underlying mechanisms of brain function and neuropsychological disorders. However, data-driven technique like independent components analysis (ICA), can yield unstable and inconsistent results, confounding the true effects of interest and hindering the understanding of brain functionality and connectivity. A key contributing factor to this instability is the information loss that occurs during fMRI data reduction. Data reduction of high dimensionality fMRI data in the temporal domain to identify the important information within group datasets is necessary for such analyses and is crucial to ensure the accuracy and stability of the outputs. In this study, we describe an fMRI data reduction strategy based on an adapted neighborhood preserving embedding (NPE) algorithm. Both simulated and real data results indicate that, compared with the widely used data reduction method, principal component analysis, the NPE-based data reduction method (a) shows superior performance on efficient data reduction, while enhancing group-level information, (b) develops a unique stratagem for selecting components based on an adjacency graph of eigenvectors, (c) generates more reliable and reproducible brain networks under different model orders when the outputs of NPE are used for ICA, (d) is more sensitive to revealing task-evoked activation for task fMRI, and (e) is extremely attractive and powerful for the increasingly popular fast fMRI and very large datasets.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherWiley
dc.relation.ispartofseriesHuman Brain Mapping
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherdimensionality reduction
dc.subject.otherfMRI
dc.subject.otherICA
dc.subject.otherNPE
dc.titleAn efficient functional magnetic resonance imaging data reduction strategy using neighborhood preserving embedding algorithm
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202201111073
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTekniikkafi
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingfi
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineEngineeringen
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingen
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1561-1576
dc.relation.issn1065-9471
dc.relation.numberinseries5
dc.relation.volume43
dc.type.versionpublishedVersion
dc.rights.copyright© 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysotoiminnallinen magneettikuvaus
dc.subject.ysosignaalinkäsittely
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p24211
jyx.subject.urihttp://www.yso.fi/onto/yso/p12266
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1002/hbm.25742
jyx.fundinginformationThis work was supported by National Natural Science Foundation of China (Grant Nos. 91748105 and 81601484), and National Foundation in China (Nos. JCKY2019110B009 and 2020-JCJQ-JJ-252) and the Fundamental Research Funds for the Central Universities (DUT20LAB303 and DUT20LAB308) in Dalian University of Technology in China, and the scholarships from China Scholarship Council (No. 202006060130). Dr. B. de B. F. was supported by the US National Institutes of Health, R01 NS097512.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0