Snowball ICA : A Model Order Free Independent Component Analysis Strategy for Functional Magnetic Resonance Imaging Data
Hu, G., Waters, A. B., Aslan, S., Frederick, B., Cong, F., & Nickerson, L. D. (2020). Snowball ICA : A Model Order Free Independent Component Analysis Strategy for Functional Magnetic Resonance Imaging Data. Frontiers in Neuroscience, 14, Article 569657. https://doi.org/10.3389/fnins.2020.569657
Julkaistu sarjassa
Frontiers in NeuroscienceTekijät
Päivämäärä
2020Tekijänoikeudet
© 2020 Hu, Waters, Aslan, Frederick, Cong and Nickerson
In independent component analysis (ICA), the selection of model order (i.e., number of components to be extracted) has crucial effects on functional magnetic resonance imaging (fMRI) brain network analysis. Model order selection (MOS) algorithms have been used to determine the number of estimated components. However, simulations show that even when the model order equals the number of simulated signal sources, traditional ICA algorithms may misestimate the spatial maps of the signal sources. In principle, increasing model order will consider more potential information in the estimation, and should therefore produce more accurate results. However, this strategy may not work for fMRI because large-scale networks are widely spatially distributed and thus have increased mutual information with noise. As such, conventional ICA algorithms with high model orders may not extract these components at all. This conflict makes the selection of model order a problem. We present a new strategy for model order free ICA, called Snowball ICA, that obviates these issues. The algorithm collects all information for each network from fMRI data without the limitations of network scale. Using simulations and in vivo resting-state fMRI data, our results show that component estimation using Snowball ICA is more accurate than traditional ICA. The Snowball ICA software is available at https://github.com/GHu-DUT/Snowball-ICA.
...
Julkaisija
Frontiers MediaISSN Hae Julkaisufoorumista
1662-4548Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/42883857
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This work was supported by National Natural Science Foundation of China (Grant No. 91748105), National Foundation in China (No. JCKY2019110B009), and the Fundamental Research Funds for the Central Universities (DUT2019) in Dalian University of Technology in China. This work was also supported by China Scholarship Council (No. 201806060038). LN was supported by the National Institutes of Health (PI: LN, DA037265, AA024565). SA and BF were supported by NS097512 (PI: BF). ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Removal of site effects and enhancement of signal using dual projection independent component analysis for pooling multi‐site MRI data
Hao, Yuxing; Xu, Huashuai; Xia, Mingrui; Yan, Chenwei; Zhang, Yunge; Zhou, Dongyue; Kärkkäinen, Tommi; Nickerson, Lisa D.; Li, Huanjie; Cong, Fengyu (Wiley-Blackwell, 2023)Combining magnetic resonance imaging (MRI) data from multi-site studies is a popular approach for constructing larger datasets to greatly enhance the reliability and reproducibility of neuroscience research. However, the ... -
Denoising brain networks using a fixed mathematical phase change in independent component analysis of magnitude-only fMRI data
Zhang, Chao‐Ying; Lin, Qiu‐Hua; Niu, Yan‐Wei; Li, Wei‐Xing; Gong, Xiao‐Feng; Cong, Fengyu; Wang, Yu‐Ping; Calhoun, Vince D. (Wiley, 2023)Brain networks extracted by independent component analysis (ICA) from magnitude-only fMRI data are usually denoised using various amplitude-based thresholds. By contrast, spatial source phase (SSP) or the phase information ... -
Enhancing Performance of Linked Independent Component Analysis : Investigating the Influence of Subjects and Modalities
Xu, Huashuai; Li, Huanjie; Kärkkäinen, Tommi; Cong, Fengyu (IEEE, 2023)In recent years, neuroimaging studies have increasingly been acquiring multiple modalities of data. The benefit of integrating multiple modalities through fusion lies in its ability to combine the unique strengths of each ... -
Harmonization of multi-site functional MRI data with dual-projection based ICA model
Xu, Huashuai; Hao, Yuxing; Zhang, Yunge; Zhou, Dongyue; Kärkkäinen, Tommi; Nickerson, Lisa D.; Li, Huanjie; Cong, Fengyu (Frontiers Media SA, 2023)Modern neuroimaging studies frequently merge magnetic resonance imaging (MRI) data from multiple sites. A larger and more diverse group of participants can increase the statistical power, enhance the reliability and ... -
Tensor clustering on outer-product of coefficient and component matrices of independent component analysis for reliable functional magnetic resonance imaging data decomposition
Hu, Guoqiang; Zhang, Qing; Waters, Abigail B.; Li, Huanjie; Zhang, Chi; Wu, Jianlin; Cong, Fengyu; Nickerson, Lisa D. (Elsevier BV, 2019)Background. Stability of spatial components is frequently used as a post-hoc selection criteria for choosing the dimensionality of an independent component analysis (ICA) of functional magnetic resonance imaging (fMRI) ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.