An efficient functional magnetic resonance imaging data reduction strategy using neighborhood preserving embedding algorithm

Abstract
High dimensionality data have become common in neuroimaging fields, especially group-level functional magnetic resonance imaging (fMRI) datasets. fMRI connectivity analysis is a widely used, powerful technique for studying functional brain networks to probe underlying mechanisms of brain function and neuropsychological disorders. However, data-driven technique like independent components analysis (ICA), can yield unstable and inconsistent results, confounding the true effects of interest and hindering the understanding of brain functionality and connectivity. A key contributing factor to this instability is the information loss that occurs during fMRI data reduction. Data reduction of high dimensionality fMRI data in the temporal domain to identify the important information within group datasets is necessary for such analyses and is crucial to ensure the accuracy and stability of the outputs. In this study, we describe an fMRI data reduction strategy based on an adapted neighborhood preserving embedding (NPE) algorithm. Both simulated and real data results indicate that, compared with the widely used data reduction method, principal component analysis, the NPE-based data reduction method (a) shows superior performance on efficient data reduction, while enhancing group-level information, (b) develops a unique stratagem for selecting components based on an adjacency graph of eigenvectors, (c) generates more reliable and reproducible brain networks under different model orders when the outputs of NPE are used for ICA, (d) is more sensitive to revealing task-evoked activation for task fMRI, and (e) is extremely attractive and powerful for the increasingly popular fast fMRI and very large datasets.
Main Authors
Format
Articles Research article
Published
2022
Series
Subjects
Publication in research information system
Publisher
Wiley
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202201111073Use this for linking
Review status
Peer reviewed
ISSN
1065-9471
DOI
https://doi.org/10.1002/hbm.25742
Language
English
Published in
Human Brain Mapping
Citation
  • Zhao, W., Li, H., Hao, Y., Hu, G., Zhang, Y., Frederick, B. D. B., & Cong, F. (2022). An efficient functional magnetic resonance imaging data reduction strategy using neighborhood preserving embedding algorithm. Human Brain Mapping, 43(5), 1561-1576. https://doi.org/10.1002/hbm.25742
License
CC BY-NC-ND 4.0Open Access
Additional information about funding
This work was supported by National Natural Science Foundation of China (Grant Nos. 91748105 and 81601484), and National Foundation in China (Nos. JCKY2019110B009 and 2020-JCJQ-JJ-252) and the Fundamental Research Funds for the Central Universities (DUT20LAB303 and DUT20LAB308) in Dalian University of Technology in China, and the scholarships from China Scholarship Council (No. 202006060130). Dr. B. de B. F. was supported by the US National Institutes of Health, R01 NS097512.
Copyright© 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Share