Two examples related to conical energies
Dąbrowski, D. (2022). Two examples related to conical energies. Annales Fennici Mathematici, 47(1), 261-281. https://doi.org/10.54330/afm.113378
Julkaistu sarjassa
Annales Fennici MathematiciTekijät
Päivämäärä
2022Tekijänoikeudet
© 2021 Annales Fennici Mathematici
Viimeaikaisessa työssä (2021) esittelimme ja tutkimme uusia kartioenergioita,
ja käytimme niitä kolmen tuloksen todistamiseen: antamaan riittävät ja välttämättömät ehdot
toisaalta suoristuville mitoille ja toisaalta Lipschitzin kuvaajien suuria osia sisältäville joukoille
sekä antamaan riittävän ehdon siistien singulaaristen integraalioperaattoreiden rajoittuneisuudelle.
Tässä tutkimuksessa esitämme kaksi näiden tulosten tarkkuuteen liittyvää esimerkkiä. Yksi näistä
on peräisin Joycelta ja Mörtersiltä (2000), mutta toinen on uusi ja kenties sellaisenaan mielenkiintoinen esimerkkinä suhteellisen rumasta joukosta, joka kuitenkin sisältää Lipschitzin kuvaajien suuria osia. In a recent article (2021) we introduced and studied conical energies. We used
them to prove three results: a characterization of rectifiable measures, a characterization of sets
with big pieces of Lipschitz graphs, and a sufficient condition for boundedness of nice singular
integral operators. In this note we give two examples related to sharpness of these results. One of
them is due to Joyce and Mörters (2000), the other is new and could be of independent interest as
an example of a relatively ugly set containing big pieces of Lipschitz graphs.
Julkaisija
Suomen matemaattinen yhdistys ryISSN Hae Julkaisufoorumista
2737-0690Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/103617758
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Ω-symmetric measures and related singular integrals
Villa, Michele (European Mathematical Society - EMS - Publishing House GmbH, 2021) -
Singular integrals on regular curves in the Heisenberg group
Fässler, Katrin; Orponen, Tuomas (Elsevier BV, 2021)Let be the first Heisenberg group, and let be a kernel which is either odd or horizontally odd, and satisfies The simplest examples include certain Riesz-type kernels first considered by Chousionis and Mattila, and the ... -
Density of Lipschitz functions in energy
Eriksson-Bique, Sylvester (Springer Science and Business Media LLC, 2023)In this paper, we show that the density in energy of Lipschitz functions in a Sobolev space N1,p(X) holds for all p∈[1,∞) whenever the space X is complete and separable and the measure is Radon and positive and finite on ... -
Yet another proof of the density in energy of Lipschitz functions
Lučić, Danka; Pasqualetto, Enrico (Springer, 2024)We provide a new, short proof of the density in energy of Lipschitz functions into the metric Sobolev space defined by using plans with barycenter (and thus, a fortiori, into the Newtonian–Sobolev space). Our result covers ... -
Filling minimality and Lipschitz-volume rigidity of convex bodies among integral current spaces
Basso, Giuliano; Creutz, Paul; Soultanis, Elefterios (De Gruyter, 2023)In this paper we consider metric fillings of boundaries of convex bodies. We show that convex bodies are the unique minimal fillings of their boundary metrics among all integral current spaces. To this end, we also prove ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.