dc.contributor.author | Werbrouck, Andreas | |
dc.contributor.author | Mattelaer, Felix | |
dc.contributor.author | Minjauw, Matthias | |
dc.contributor.author | Nisula, Mikko | |
dc.contributor.author | Julin, Jaakko | |
dc.contributor.author | Munnik, Frans | |
dc.contributor.author | Dendooven, Jolien | |
dc.contributor.author | Detavernier, Christophe | |
dc.date.accessioned | 2021-11-18T12:43:07Z | |
dc.date.available | 2021-11-18T12:43:07Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Werbrouck, A., Mattelaer, F., Minjauw, M., Nisula, M., Julin, J., Munnik, F., Dendooven, J., & Detavernier, C. (2020). Reaction Pathways for Atomic Layer Deposition with Lithium Hexamethyl Disilazide, Trimethyl Phosphate, and Oxygen Plasma. <i>Journal of Physical Chemistry C</i>, <i>124</i>(50), 27829-27839. <a href="https://doi.org/10.1021/acs.jpcc.0c09284" target="_blank">https://doi.org/10.1021/acs.jpcc.0c09284</a> | |
dc.identifier.other | CONVID_47361005 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/78702 | |
dc.description.abstract | Atomic layer deposition (ALD) of lithium-containing films is of interest for the development of next-generation energy storage devices. Lithium hexamethyl disilazide (LiHMDS) is an established precursor to grow these types of films. The LiHMDS molecule can either be used as a single-source precursor molecule for lithium or as a dual-source precursor molecule for lithium and silicon. Single-source behavior of LiHMDS is observed in the deposition process with trimethylphosphate (TMP) resulting in the deposition of crystalline lithium phosphate (Li3PO4). In contrast, LiHMDS exhibits dual-source behavior when combined with O2 plasma, resulting in a lithium silicate. Both processes were characterized with in situ ellipsometry, in situ time-resolved full-range mass spectrometry, X-ray photoelectron spectroscopy (XPS), and elastic recoil detection analysis (ERDA). When we combined both reactants into a three-step LiHMDS-TMP-O2* or LiHMDS-O2*-TMP process, the dual-source nature of LiHMDS emerged again. By carefully combining our measurements, it is shown that film growth with LiHMDS (in combination with TMP and O2 plasma) is driven by dipole-driven self-saturated surface interactions combined with dissociative chemisorption. We show that when hydroxyl groups are present on the surface, silicon will be incorporated in the films. These insights benefit the general understanding of the behavior of the LiHMDS and TMP precursors and may facilitate their effective use in ternary or quaternary processes. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | American Chemical Society (ACS) | |
dc.relation.ispartofseries | Journal of Physical Chemistry C | |
dc.rights | In Copyright | |
dc.title | Reaction Pathways for Atomic Layer Deposition with Lithium Hexamethyl Disilazide, Trimethyl Phosphate, and Oxygen Plasma | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202111185713 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.contributor.oppiaine | Kiihdytinlaboratorio | fi |
dc.contributor.oppiaine | Accelerator Laboratory | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 27829-27839 | |
dc.relation.issn | 1932-7447 | |
dc.relation.numberinseries | 50 | |
dc.relation.volume | 124 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2020 American Chemical Society | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | atomikerroskasvatus | |
dc.subject.yso | litium | |
dc.subject.yso | ohutkalvot | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27468 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p29475 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p16644 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1021/acs.jpcc.0c09284 | |
jyx.fundinginformation | A.W. thanks the Fund for Scientific Research - Flanders (FWO) for a scholarship through an SB grant (Number 1S12319N). Hiden Analytical is acknowledged for technical support. Parts of this research were carried out at the Ion Beam Center at the Helmholtz-Zentrum Dresden-Rossendorf e. V., a member of the Helmholtz Association. | |
dc.type.okm | A1 | |