Show simple item record

dc.contributor.authorHopke, Alex
dc.contributor.authorMela, Alex
dc.contributor.authorEllett, Felix
dc.contributor.authorCarter-House, Derreck
dc.contributor.authorPeña, Jesús F.
dc.contributor.authorStajich, Jason E.
dc.contributor.authorAltamirano, Sophie
dc.contributor.authorLovett, Brian
dc.contributor.authorEgan, Martin
dc.contributor.authorKale, Shiv
dc.contributor.authorKronholm, Ilkka
dc.contributor.authorGuerette, Paul
dc.contributor.authorSzewczyk, Edyta
dc.contributor.authorMcCluskey, Kevin
dc.contributor.authorBreslauer, David
dc.contributor.authorShah, Hiral
dc.contributor.authorCoad, Bryan R.
dc.contributor.authorMomany, Michelle
dc.contributor.authorIrimia, Daniel
dc.date.accessioned2021-10-06T11:48:39Z
dc.date.available2021-10-06T11:48:39Z
dc.date.issued2021
dc.identifier.citationHopke, A., Mela, A., Ellett, F., Carter-House, D., Peña, J. F., Stajich, J. E., Altamirano, S., Lovett, B., Egan, M., Kale, S., Kronholm, I., Guerette, P., Szewczyk, E., McCluskey, K., Breslauer, D., Shah, H., Coad, B. R., Momany, M., & Irimia, D. (2021). Crowdsourced analysis of fungal growth and branching on microfluidic platforms. <i>PLoS ONE</i>, <i>16</i>(9), Article e0257823. <a href="https://doi.org/10.1371/journal.pone.0257823" target="_blank">https://doi.org/10.1371/journal.pone.0257823</a>
dc.identifier.otherCONVID_101361583
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/78039
dc.description.abstractFungal hyphal growth and branching are essential traits that allow fungi to spread and proliferate in many environments. This sustained growth is essential for a myriad of applications in health, agriculture, and industry. However, comparisons between different fungi are difficult in the absence of standardized metrics. Here, we used a microfluidic device featuring four different maze patterns to compare the growth velocity and branching frequency of fourteen filamentous fungi. These measurements result from the collective work of several labs in the form of a competition named the “Fungus Olympics.” The competing fungi included five ascomycete species (ten strains total), two basidiomycete species, and two zygomycete species. We found that growth velocity within a straight channel varied from 1 to 4 μm/min. We also found that the time to complete mazes when fungal hyphae branched or turned at various angles did not correlate with linear growth velocity. We discovered that fungi in our study used one of two distinct strategies to traverse mazes: high-frequency branching in which all possible paths were explored, and low-frequency branching in which only one or two paths were explored. While the high-frequency branching helped fungi escape mazes with sharp turns faster, the low-frequency turning had a significant advantage in mazes with shallower turns. Future work will more systematically examine these trends.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherPublic Library of Science (PLoS)
dc.relation.ispartofseriesPLoS ONE
dc.rightsCC BY 4.0
dc.subject.othercrowdsourcing
dc.subject.otherfungal growth
dc.subject.otherbranching
dc.subject.othermicrofluidic platforms
dc.titleCrowdsourced analysis of fungal growth and branching on microfluidic platforms
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202110065087
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineBiologisten vuorovaikutusten huippututkimusyksikköfi
dc.contributor.oppiaineEkologia ja evoluutiobiologiafi
dc.contributor.oppiaineCentre of Excellence in Biological Interactions Researchen
dc.contributor.oppiaineEcology and Evolutionary Biologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1932-6203
dc.relation.numberinseries9
dc.relation.volume16
dc.type.versionpublishedVersion
dc.rights.copyright© 2021 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysosienet
dc.subject.ysojoukkoistaminen
dc.subject.ysomikrofluidistiikka
dc.subject.ysosienirihmastot
dc.subject.ysokasvu
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p90
jyx.subject.urihttp://www.yso.fi/onto/yso/p25552
jyx.subject.urihttp://www.yso.fi/onto/yso/p38414
jyx.subject.urihttp://www.yso.fi/onto/yso/p20267
jyx.subject.urihttp://www.yso.fi/onto/yso/p5789
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1371/journal.pone.0257823
jyx.fundinginformationFunding to the Irimia lab included support from NIH GM092804 and EB002503. Funding to the Momany lab included support from the Burroughs Wellcome Fund CRT1017499. Funding to the Stajich lab included support from NSF DEB-1441715. Stajich is a CIFAR fellow in the program Fungal Kingdom: Threats and Opportunities.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0