Defining gut mycobiota for wild animals : a need for caution in assigning authentic resident fungal taxa
Lavrinienko, A., Scholier, T., Bates, S. T., Miller, A. N., & Watts, P. C. (2021). Defining gut mycobiota for wild animals : a need for caution in assigning authentic resident fungal taxa. Animal Microbiome, 3, Article 75. https://doi.org/10.1186/s42523-021-00134-z
Published in
Animal MicrobiomeAuthors
Date
2021Copyright
© The Author(s) 2021
Animal gut mycobiota, the community of fungi that reside within the gastrointestinal tract, make an important contribution to host health. Accordingly, there is an emerging interest to quantify the gut mycobiota of wild animals. However, many studies of wild animal gut mycobiota do not distinguish between the fungi that likely can reside within animal gastrointestinal tracts from the fungal taxa that are non-residents, such as macrofungi, lichens or plant symbionts/pathogens that can be ingested as part of the host’s diet. Confounding the non-resident and resident gut fungi may obscure attempts to identify processes associated with the authentic, resident gut mycobiota per se. To redress this problem, we propose some strategies to filter the taxa identified within an apparent gut mycobiota based on an assessment of host ecology and fungal traits. Consideration of the different sources and roles of fungi present within the gastrointestinal tract should facilitate a more precise understanding of the causes and consequences of variation in wild animal gut mycobiota composition.
...


Publisher
Biomed CentralISSN Search the Publication Forum
2524-4671Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/101688754
Metadata
Show full item recordCollections
Related funder(s)
Academy of FinlandFunding program(s)
Academy Project, AoF; Joint International Project, AoF
Additional information about funding
We are grateful for funding from the Academy of Finland (287153, 329334, 324602) to P.C. Watts, and funding from the University of Jyväskylä to support T. Scholier. Research support was provided to S.T. Bates through the Nils K. Nelson Endowment in the College of Engineering and Sciences at Purdue University Northwest.License
Related items
Showing items with similar title or keywords.
-
Interpretation of gut microbiota data in the ‘eye of the beholder’ : A commentary and re‐evaluation of data from ‘Impacts of radiation exposure on the bacterial and fungal microbiome of small mammals in the Chernobyl Exclusion Zone’
Watts, Phillip C.; Mappes, Tapio; Tukalenko, Eugene; Mousseau, Timothy A.; Boratyński, Zbyszek; Møller, Anders P.; Lavrinienko, Anton (Wiley-Blackwell, 2022)1.Evidence that exposure to environmental pollutants can alter the gut microbiota composition of wildlife includes studies of rodents exposed to radionuclides. 2.Antwis et al. (2021) used amplicon sequencing to characterise ... -
Evolved high aerobic capacity has context-specific effects on gut microbiota
Hanhimäki, Elina; Watts, Phillip C.; Koskela, Esa; Koteja, Paweł; Mappes, Tapio; Hämäläinen, Anni M. (Frontiers Media SA, 2022)Gut microbiota is expected to coevolve with the host's physiology and may play a role in adjusting the host's energy metabolism to suit the host's environment. To evaluate the effects of both evolved host metabolism and ... -
Low-level environmental metal pollution is associated with altered gut microbiota of a wild rodent, the bank vole (Myodes glareolus)
Brila, Ilze; Lavrinienko, Anton; Tukalenko, Eugene; Ecke, Frauke; Rodushkin, Ilia; Kallio, Eva R.; Mappes, Tapio; Watts, Phillip C. (Elsevier BV, 2021)Mining and related industries are a major source of metal pollution. In contrast to the well-studied effects of exposure to metals on animal physiology and health, the impacts of environmental metal pollution on the gut ... -
Fungal Dysbiosis and Intestinal Inflammation in Children With Beta-Cell Autoimmunity
Honkanen, Jarno; Vuorela, Arja; Muthas, Daniel; Orivuori, Laura; Luopajärvi, Kristiina; Tejesvi, Mysore Vishakante Gowda; Lavrinienko, Anton; Pirttilä, Anna Maria; Fogarty, Christopher L.; Härkönen, Taina; Ilonen, Jorma; Ruohtula, Terhi; Knip, Mikael; Koskimäki, Janne J.; Vaarala, Outi (Frontiers Media, 2020)Although gut bacterial dysbiosis is recognized as a regulator of beta-cell autoimmunity, no data is available on fungal dysbiosis in the children at the risk of type 1 diabetes (T1D). We hypothesized that the co-occurrence ... -
Wood-inhabiting fungal communities : Opportunities for integration of empirical and theoretical community ecology
Abrego, Nerea (Elsevier, 2022)The interest in studying wood-inhabiting fungal communities has grown in recent years. This interest has mainly been motivated by the important roles of wood-inhabiting fungi in ecosystem functioning (e.g. nutrient cycling) ...