Approximation of functions over manifolds : A Moving Least-Squares approach
Sober, B., Aizenbud, Y., & Levin, D. (2021). Approximation of functions over manifolds : A Moving Least-Squares approach. Journal of Computational and Applied Mathematics, 383, Article 113140. https://doi.org/10.1016/j.cam.2020.113140
Julkaistu sarjassa
Journal of Computational and Applied MathematicsPäivämäärä
2021Tekijänoikeudet
© 2020 Elsevier B.V. All rights reserved.
We present an algorithm for approximating a function defined over a d-dimensional manifold utilizing only noisy function values at locations sampled from the manifold with noise. To produce the approximation we do not require knowledge about the local geometry of the manifold or its local parameterizations. We do require, however, knowledge regarding the manifold's intrinsic dimension d. We use the Manifold Moving Least-Squares approach of Sober and Levin (2019) to reconstruct the atlas of charts and the approximation is built on top of those charts. The resulting approximant is shown to be a function defined over a neighborhood of a manifold, approximating the originally sampled manifold. In other words, given a new point, located near the manifold, the approximation can be evaluated directly on that point. We prove that our construction yields a smooth function, and in case of noiseless samples the approximation order is O(hm+1), where h is a local density of sample parameter (i.e., the fill distance) and m is the degree of a local polynomial approximation, used in our algorithm. In addition, the proposed algorithm has linear time complexity with respect to the ambient space's dimension. Thus, we are able to avoid the computational complexity, commonly encountered in high dimensional approximations, without having to perform non-linear dimension reduction, which inevitably introduces distortions to the geometry of the data. Additionally, we show numerically that our approach compares favorably to some well-known approaches for regression over manifolds.
...
Julkaisija
Elsevier BVISSN Hae Julkaisufoorumista
0377-0427Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/41936649
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This research was partially supported by the Israel Science Foundation (ISF 1556/17), Blavatink ICRC Funds, Fellowships from Jyväskylä University, Finland and the Clore Foundation.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Functional Type Error Control for Stabilised Space-Time IgA Approximations to Parabolic Problems
Langer, Ulrich; Matculevich, Svetlana; Repin, Sergey (Springer International Publishing, 2018)The paper is concerned with reliable space-time IgA schemes for parabolic initial-boundary value problems. We deduce a posteriori error estimates and investigate their applicability to space-time IgA approximations. ... -
A quantitative second order estimate for (weighted) p-harmonic functions in manifolds under curvature-dimension condition
Liu, Jiayin; Zhang, Shijin; Zhou, Yuan (Elsevier, 2024)We build up a quantitative second-order Sobolev estimate of lnw for positive p-harmonic functions w in Riemannian manifolds under Ricci curvature bounded from below and also for positive weighted p-harmonic functions w in ... -
Guaranteed and computable error bounds for approximations constructed by an iterative decoupling of the Biot problem
Kumar, Kundan; Kyas, Svetlana; Nordbotten, Jan Martin; Repin, Sergey (Elsevier, 2021)The paper is concerned with guaranteed a posteriori error estimates for a class of evolutionary problems related to poroelastic media governed by the quasi-static linear Biot equations. The system is decoupled by employing ... -
Time-dependent weak rate of convergence for functions of generalized bounded variation
Luoto, Antti (Taylor & Francis, 2021)Let W denote the Brownian motion. For any exponentially bounded Borel function g the function u defined by u(t,x)=E[g(x+σWT−t)] is the stochastic solution of the backward heat equation with terminal condition g. Let un(t,x) ... -
Reliable control over approximation errors by functional type a posteriori estimates
Frolov, Maxim (University of Jyväskylä, 2004)FM Maxim Frolovin tieteellisen laskennan väitöskirjan ”Reliable Control over Approximation Errors by Functional Type A Posteriori Estimates” tarkastustilaisuus. Vastaväittäjänä professori Rolf Stenberg (Teknillinen ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.