Time-dependent weak rate of convergence for functions of generalized bounded variation
Luoto, A. (2021). Time-dependent weak rate of convergence for functions of generalized bounded variation. Stochastic Analysis and Applications, 39(3), 494-524. https://doi.org/10.1080/07362994.2020.1809458
Julkaistu sarjassa
Stochastic Analysis and ApplicationsTekijät
Päivämäärä
2021Tekijänoikeudet
© 2020 The Author(s). Published with license by Taylor and Francis Group, LLC
Let W denote the Brownian motion. For any exponentially bounded Borel function g the function u defined by u(t,x)=E[g(x+σWT−t)] is the stochastic solution of the backward heat equation with terminal condition g. Let un(t,x) denote the corresponding approximation generated by a simple symmetric random walk with time steps 2T/n and space steps ±σ√T/n where σ>0. For a class of terminal functions g having bounded variation on compact intervals, the rate of convergence of un(t,x) to u(t, x) is considered, and also the behavior of the error un(t,x)−u(t,x) as t tends to T.
Julkaisija
Taylor & FrancisISSN Hae Julkaisufoorumista
0736-2994Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/41949122
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
The author was financially supported by the Magnus Ehrnrooth Foundation and The FinnishCultural Foundation during the preparation of this article.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Approximation of heat equation and backward SDEs using random walk : convergence rates
Luoto, Antti (University of Jyväskylä, 2018)This thesis addresses questions related to approximation arising from the fields of stochastic analysis and partial differential equations. Theoretical results regarding convergence rates are obtained by using discretization ... -
Mean square rate of convergence for random walk approximation of forward-backward SDEs
Geiss, Christel; Labart, Céline; Luoto, Antti (Cambridge University Press (CUP), 2020)Let (Y, Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk from the underlying Brownian motion B by Skorokhod embedding, one can show -convergence of ... -
Functional Type Error Control for Stabilised Space-Time IgA Approximations to Parabolic Problems
Langer, Ulrich; Matculevich, Svetlana; Repin, Sergey (Springer International Publishing, 2018)The paper is concerned with reliable space-time IgA schemes for parabolic initial-boundary value problems. We deduce a posteriori error estimates and investigate their applicability to space-time IgA approximations. ... -
Guaranteed and computable error bounds for approximations constructed by an iterative decoupling of the Biot problem
Kumar, Kundan; Kyas, Svetlana; Nordbotten, Jan Martin; Repin, Sergey (Elsevier, 2021)The paper is concerned with guaranteed a posteriori error estimates for a class of evolutionary problems related to poroelastic media governed by the quasi-static linear Biot equations. The system is decoupled by employing ... -
Approximation of functions over manifolds : A Moving Least-Squares approach
Sober, Barak; Aizenbud, Yariv; Levin, David (Elsevier BV, 2021)We present an algorithm for approximating a function defined over a d-dimensional manifold utilizing only noisy function values at locations sampled from the manifold with noise. To produce the approximation we do not ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.