Näytä suppeat kuvailutiedot

dc.contributor.authorSober, Barak
dc.contributor.authorAizenbud, Yariv
dc.contributor.authorLevin, David
dc.date.accessioned2021-09-29T09:05:52Z
dc.date.available2021-09-29T09:05:52Z
dc.date.issued2021
dc.identifier.citationSober, B., Aizenbud, Y., & Levin, D. (2021). Approximation of functions over manifolds : A Moving Least-Squares approach. <i>Journal of Computational and Applied Mathematics</i>, <i>383</i>, Article 113140. <a href="https://doi.org/10.1016/j.cam.2020.113140" target="_blank">https://doi.org/10.1016/j.cam.2020.113140</a>
dc.identifier.otherCONVID_41936649
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/77962
dc.description.abstractWe present an algorithm for approximating a function defined over a d-dimensional manifold utilizing only noisy function values at locations sampled from the manifold with noise. To produce the approximation we do not require knowledge about the local geometry of the manifold or its local parameterizations. We do require, however, knowledge regarding the manifold's intrinsic dimension d. We use the Manifold Moving Least-Squares approach of Sober and Levin (2019) to reconstruct the atlas of charts and the approximation is built on top of those charts. The resulting approximant is shown to be a function defined over a neighborhood of a manifold, approximating the originally sampled manifold. In other words, given a new point, located near the manifold, the approximation can be evaluated directly on that point. We prove that our construction yields a smooth function, and in case of noiseless samples the approximation order is O(hm+1), where h is a local density of sample parameter (i.e., the fill distance) and m is the degree of a local polynomial approximation, used in our algorithm. In addition, the proposed algorithm has linear time complexity with respect to the ambient space's dimension. Thus, we are able to avoid the computational complexity, commonly encountered in high dimensional approximations, without having to perform non-linear dimension reduction, which inevitably introduces distortions to the geometry of the data. Additionally, we show numerically that our approach compares favorably to some well-known approaches for regression over manifolds.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier BV
dc.relation.ispartofseriesJournal of Computational and Applied Mathematics
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherdimension reduction
dc.subject.otherhigh dimensional approximation
dc.subject.othermanifold learning
dc.subject.othermoving least-squares
dc.subject.otherout-of-sample extension
dc.subject.otherregression over manifolds
dc.titleApproximation of functions over manifolds : A Moving Least-Squares approach
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202109295026
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0377-0427
dc.relation.volume383
dc.type.versionacceptedVersion
dc.rights.copyright© 2020 Elsevier B.V. All rights reserved.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysomonistot
dc.subject.ysoapproksimointi
dc.subject.ysofunktiot
dc.subject.ysonumeerinen analyysi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p28181
jyx.subject.urihttp://www.yso.fi/onto/yso/p4982
jyx.subject.urihttp://www.yso.fi/onto/yso/p7097
jyx.subject.urihttp://www.yso.fi/onto/yso/p15833
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.cam.2020.113140
jyx.fundinginformationThis research was partially supported by the Israel Science Foundation (ISF 1556/17), Blavatink ICRC Funds, Fellowships from Jyväskylä University, Finland and the Clore Foundation.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0