dc.contributor.author | Cong, Fengyu | |
dc.contributor.author | Zhou, Guoxu | |
dc.contributor.author | Astikainen, Piia | |
dc.contributor.author | Zhao, Qibin | |
dc.contributor.author | Wu, Qiang | |
dc.contributor.author | Nandi, Asoke | |
dc.contributor.author | Hietanen, Jari K. | |
dc.contributor.author | Ristaniemi, Tapani | |
dc.contributor.author | Cichocki, Andrzej | |
dc.date.accessioned | 2021-09-20T08:21:34Z | |
dc.date.available | 2021-09-20T08:21:34Z | |
dc.date.issued | 2014 | |
dc.identifier.citation | Cong, F., Zhou, G., Astikainen, P., Zhao, Q., Wu, Q., Nandi, A., Hietanen, J. K., Ristaniemi, T., & Cichocki, A. (2014). Low-rank approximation based non-negative multi-way array decomposition on event-related potentials. <i>International Journal of Neural Systems</i>, <i>24</i>(8), Article 1440005. <a href="https://doi.org/10.1142/S012906571440005X" target="_blank">https://doi.org/10.1142/S012906571440005X</a> | |
dc.identifier.other | CONVID_23749884 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/77841 | |
dc.description.abstract | Non-negative tensor factorization (NTF) has been successfully applied to analyze event-related potentials (ERPs), and shown superiority in terms of capturing multi-domain features. However, the time-frequency representation of ERPs by higher-order tensors are usually large-scale, which prevents the popularity of most tensor factorization algorithms. To overcome this issue, we introduce a non-negative canonical polyadic decomposition (NCPD) based on low-rank approximation (LRA) and hierarchical alternating least square (HALS) techniques. We applied NCPD (LRAHALS and benchmark HALS) and CPD to extract multi-domain features of a visual ERP. The features and components extracted by LRAHALS NCPD and HALS NCPD were very similar, but LRAHALS NCPD was 70 times faster than HALS NCPD. Moreover, the desired multi-domain feature of the ERP by NCPD showed a significant group difference (control versus depressed participants) and a difference in emotion processing (fearful versus happy faces). This was more satisfactory than that by CPD, which revealed only a group difference. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | World Scientific | |
dc.relation.ispartofseries | International Journal of Neural Systems | |
dc.rights | CC BY 4.0 | |
dc.subject.other | Event-related potential | |
dc.subject.other | low-rank approximation | |
dc.subject.other | multi-domain feature | |
dc.subject.other | non-negative canonical polyadic decomposition | |
dc.subject.other | non-negative tensor factorization | |
dc.subject.other | tensor decomposition | |
dc.title | Low-rank approximation based non-negative multi-way array decomposition on event-related potentials | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202109204914 | |
dc.contributor.laitos | Psykologian laitos | fi |
dc.contributor.laitos | Tietotekniikan laitos | fi |
dc.contributor.laitos | Department of Psychology | en |
dc.contributor.laitos | Department of Mathematical Information Technology | en |
dc.contributor.oppiaine | Psykologia | fi |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Psychology | en |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0129-0657 | |
dc.relation.numberinseries | 8 | |
dc.relation.volume | 24 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2014 the Authors | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.format.content | fulltext | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1142/S012906571440005X | |
dc.type.okm | A1 | |