Higher-order Nonnegative CANDECOMP/PARAFAC Tensor Decomposition Using Proximal Algorithm
Wang, D., Cong, F., & Ristaniemi, T. (2019). Higher-order Nonnegative CANDECOMP/PARAFAC Tensor Decomposition Using Proximal Algorithm. In ICASSP 2019 : Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 3457-3461). IEEE. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. https://doi.org/10.1109/ICASSP.2019.8683217
Julkaistu sarjassa
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal ProcessingPäivämäärä
2019Tekijänoikeudet
© 2019 IEEE.
Tensor decomposition is a powerful tool for analyzing multiway data. Nowadays, with the fast development of multisensor technology, more and more data appear in higherorder (order > 4) and nonnegative form. However, the decomposition of higher-order nonnegative tensor suffers from
poor convergence and low speed. In this study, we propose a
new nonnegative CANDECOM/PARAFAC (NCP) model using proximal algorithm. The block principal pivoting method
in alternating nonnegative least squares (ANLS) framework
is employed to minimize the objective function. Our method
can guarantee the convergence and accelerate the computation. The results of experiments on both synthetic and real
data demonstrate the efficiency and superiority of our method.
Julkaisija
IEEEEmojulkaisun ISBN
978-1-4799-8131-1Konferenssi
IEEE International Conference on Acoustics, Speech and Signal ProcessingKuuluu julkaisuun
ICASSP 2019 : Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal ProcessingISSN Hae Julkaisufoorumista
1520-6149Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/30537527
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Sparse nonnegative tensor decomposition using proximal algorithm and inexact block coordinate descent scheme
Wang, Deqing; Chang, Zheng; Cong, Fengyu (Springer, 2021)Nonnegative tensor decomposition is a versatile tool for multiway data analysis, by which the extracted components are nonnegative and usually sparse. Nevertheless, the sparsity is only a side effect and cannot be explicitly ... -
Extracting multi-mode ERP features using fifth-order nonnegative tensor decomposition
Wang, Deqing; Zhu, Yongjie; Ristaniemi, Tapani; Cong, Fengyu (Elsevier BV, 2018)Background Preprocessed Event-related potential (ERP) data are usually organized in multi-way tensor, in which tensor decomposition serves as a powerful tool for data processing. Due to the limitation of computation burden ... -
Shared and Unshared Feature Extraction in Major Depression During Music Listening Using Constrained Tensor Factorization
Wang, Xiulin; Liu, Wenya; Wang, Xiaoyu; Mu, Zhen; Xu, Jing; Chang, Yi; Zhang, Qing; Wu, Jianlin; Cong, Fengyu (Frontiers Media SA, 2021)Ongoing electroencephalography (EEG) signals are recorded as a mixture of stimulus-elicited EEG, spontaneous EEG and noises, which poses a huge challenge to current data analyzing techniques, especially when different ... -
Low-rank approximation based non-negative multi-way array decomposition on event-related potentials
Cong, Fengyu; Zhou, Guoxu; Astikainen, Piia; Zhao, Qibin; Wu, Qiang; Nandi, Asoke; Hietanen, Jari K.; Ristaniemi, Tapani; Cichocki, Andrzej (World Scientific, 2014)Non-negative tensor factorization (NTF) has been successfully applied to analyze event-related potentials (ERPs), and shown superiority in terms of capturing multi-domain features. However, the time-frequency representation ... -
Fast Implementation of Double-coupled Nonnegative Canonical Polyadic Decomposition
Wang, Xiulin; Ristaniemi, Tapani; Cong, Fengyu (IEEE, 2019)Real-world data exhibiting high order/dimensionality and various couplings are linked to each other since they share some common characteristics. Coupled tensor decomposition has become a popular technique for group ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.