Show simple item record

dc.contributor.authorCong, Fengyu
dc.contributor.authorZhou, Guoxu
dc.contributor.authorAstikainen, Piia
dc.contributor.authorZhao, Qibin
dc.contributor.authorWu, Qiang
dc.contributor.authorNandi, Asoke
dc.contributor.authorHietanen, Jari K.
dc.contributor.authorRistaniemi, Tapani
dc.contributor.authorCichocki, Andrzej
dc.date.accessioned2021-09-20T08:21:34Z
dc.date.available2021-09-20T08:21:34Z
dc.date.issued2014
dc.identifier.citationCong, F., Zhou, G., Astikainen, P., Zhao, Q., Wu, Q., Nandi, A., Hietanen, J. K., Ristaniemi, T., & Cichocki, A. (2014). Low-rank approximation based non-negative multi-way array decomposition on event-related potentials. <i>International Journal of Neural Systems</i>, <i>24</i>(8), Article 1440005. <a href="https://doi.org/10.1142/S012906571440005X" target="_blank">https://doi.org/10.1142/S012906571440005X</a>
dc.identifier.otherCONVID_23749884
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/77841
dc.description.abstractNon-negative tensor factorization (NTF) has been successfully applied to analyze event-related potentials (ERPs), and shown superiority in terms of capturing multi-domain features. However, the time-frequency representation of ERPs by higher-order tensors are usually large-scale, which prevents the popularity of most tensor factorization algorithms. To overcome this issue, we introduce a non-negative canonical polyadic decomposition (NCPD) based on low-rank approximation (LRA) and hierarchical alternating least square (HALS) techniques. We applied NCPD (LRAHALS and benchmark HALS) and CPD to extract multi-domain features of a visual ERP. The features and components extracted by LRAHALS NCPD and HALS NCPD were very similar, but LRAHALS NCPD was 70 times faster than HALS NCPD. Moreover, the desired multi-domain feature of the ERP by NCPD showed a significant group difference (control versus depressed participants) and a difference in emotion processing (fearful versus happy faces). This was more satisfactory than that by CPD, which revealed only a group difference.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherWorld Scientific
dc.relation.ispartofseriesInternational Journal of Neural Systems
dc.rightsCC BY 4.0
dc.subject.otherEvent-related potential
dc.subject.otherlow-rank approximation
dc.subject.othermulti-domain feature
dc.subject.othernon-negative canonical polyadic decomposition
dc.subject.othernon-negative tensor factorization
dc.subject.othertensor decomposition
dc.titleLow-rank approximation based non-negative multi-way array decomposition on event-related potentials
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202109204914
dc.contributor.laitosPsykologian laitosfi
dc.contributor.laitosTietotekniikan laitosfi
dc.contributor.laitosDepartment of Psychologyen
dc.contributor.laitosDepartment of Mathematical Information Technologyen
dc.contributor.oppiainePsykologiafi
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiainePsychologyen
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0129-0657
dc.relation.numberinseries8
dc.relation.volume24
dc.type.versionpublishedVersion
dc.rights.copyright© 2014 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.format.contentfulltext
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1142/S012906571440005X
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0