Multimodal Aposematic Defenses Through the Predation Sequence
Winters, A. E., Lommi, J., Kirvesoja, J., Nokelainen, O., & Mappes, J. (2021). Multimodal Aposematic Defenses Through the Predation Sequence. Frontiers in Ecology and Evolution, 9, Article 657740. https://doi.org/10.3389/fevo.2021.657740
Julkaistu sarjassa
Frontiers in Ecology and EvolutionPäivämäärä
2021Oppiaine
Ekologia ja evoluutiobiologiaEvoluutiotutkimus (huippuyksikkö)Ecology and Evolutionary BiologyCentre of Excellence in Evolutionary ResearchTekijänoikeudet
© 2021 the Authors
Aposematic organisms warn predators of their unprofitability using a combination of defenses, including visual warning signals, startling sounds, noxious odors, or aversive tastes. Using multiple lines of defense can help prey avoid predators by stimulating multiple senses and/or by acting at different stages of predation. We tested the efficacy of three lines of defense (color, smell, taste) during the predation sequence of aposematic wood tiger moths (Arctia plantaginis) using blue tit (Cyanistes caeruleus) predators. Moths with two hindwing phenotypes (genotypes: WW/Wy = white, yy = yellow) were manipulated to have defense fluid with aversive smell (methoxypyrazines), body tissues with aversive taste (pyrrolizidine alkaloids) or both. In early predation stages, moth color and smell had additive effects on bird approach latency and dropping the prey, with the strongest effect for moths of the white morph with defense fluids. Pyrrolizidine alkaloid sequestration was detrimental in early attack stages, suggesting a trade-off between pyrrolizidine alkaloid sequestration and investment in other defenses. In addition, pyrrolizidine alkaloid taste alone did not deter bird predators. Birds could only effectively discriminate toxic moths from non-toxic moths when neck fluids containing methoxypyrazines were present, at which point they abandoned attack at the consumption stage. As a result, moths of the white morph with an aversive methoxypyrazine smell and moths in the treatment with both chemical defenses had the greatest chance of survival. We suggest that methoxypyrazines act as context setting signals for warning colors and as attention alerting or “go-slow” signals for distasteful toxins, thereby mediating the relationship between warning signal and toxicity. Furthermore, we found that moths that were heterozygous for hindwing coloration had more effective defense fluids compared to other genotypes in terms of delaying approach and reducing the latency to drop the moth, suggesting a genetic link between coloration and defense that could help to explain the color polymorphism. Conclusively, these results indicate that color, smell, and taste constitute a multimodal warning signal that impedes predator attack and improves prey survival. This work highlights the importance of understanding the separate roles of color, smell and taste through the predation sequence and also within-species variation in chemical defenses.
...
Julkaisija
Frontiers Media SAISSN Hae Julkaisufoorumista
2296-701XAsiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/99330219
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiaprofessorin tutkimuskulut, SALisätietoja rahoituksesta
This work was supported by the Academy of Finland to JM (#320438) and the Grant (#21000038821) to ON and by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant agreement (#840944) to AW.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Evolution of signal diversity : predator-prey interactions and the maintenance of warning colour polymorphism in the wood tiger moth Arctia plantaginis
Rönkä, Katja (University of Jyväskylä, 2017)Aposematic organisms avoid predation by advertising defences with warning signals. The theory of aposematism predicts warning signal uniformity, yet variation in warning coloration is widespread. The chemically defended ... -
Influence of colour, smell and taste on the survival of the wood tiger moth (Arctia plantaginis) adults during predation event
Lommi, Jenna (2021)Saalistajien torjumiseksi saalis voi käyttää erilaisia puolustusmekanismeja, jotka stimuloivat useita eri aisteja (ts. multimodaalista signalointia). Esimerkiksi aposemaattiset eliöt puolustautuvat varoitussignaalin lisäksi ... -
Defense against predators incurs high reproductive costs for the aposematic moth Arctia plantaginis
Lindstedt, Carita; Suisto, Kaisa; Burdfield-Steel, Emily; Winters, Anne E.; Mappes, Johanna (Oxford University Press, 2020)To understand how variation in warning displays evolves and is maintained, we need to understand not only how perceivers of these traits select color and toxicity but also the sources of the genetic and phenotypic variation ... -
Predator-Induced Plasticity on Warning Signal and Larval Life-History Traits of the Aposematic Wood Tiger Moth, Arctia plantaginis
Abondano Almeida, Diana; Mappes, Johanna; Gordon, Swanne (Frontiers Media SA, 2021)Predator-induced plasticity in life-history and antipredator traits during the larval period has been extensively studied in organisms with complex life-histories. However, it is unclear whether different levels of predation ... -
The price of safety : food deprivation in early life influences the efficacy of chemical defence in an aposematic moth
Burdfield-Steel, Emily; Brain, Morgan; Rojas Zuluaga, Bibiana; Mappes, Johanna (Wiley-Blackwell Publishing Ltd., 2019)Aposematism is the combination of a primary signal with a secondary defence that predators must learn to associate with one another. However, variation in the level of defence, both within and between species, is very ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.