Näytä suppeat kuvailutiedot

dc.contributor.authorHeinonen, Juha
dc.contributor.authorHaarahiltunen, Antti
dc.contributor.authorKettunen, Heikki
dc.contributor.authorJaatinen, Jukka
dc.contributor.authorRossi, Mikko
dc.contributor.authorHeino, Jouni
dc.contributor.authorSavin, Hele
dc.contributor.authorJuntunen, Mikko A.
dc.contributor.editorSodnik, Zoran
dc.contributor.editorCugny, Bruno
dc.contributor.editorKarafolas, Nikos
dc.date.accessioned2021-07-08T10:15:22Z
dc.date.available2021-07-08T10:15:22Z
dc.date.issued2021
dc.identifier.citationHeinonen, J., Haarahiltunen, A., Kettunen, H., Jaatinen, J., Rossi, M., Heino, J., Savin, H., & Juntunen, M. A. (2021). Improved stability of black silicon detectors using aluminum oxide surface passivation. In Z. Sodnik, B. Cugny, & N. Karafolas (Eds.), <i>International Conference on Space Optics : ICSO 2020</i> (Article 118520T-2). SPIE. Proceedings of SPIE : the International Society for Optical Engineering, 11852. <a href="https://doi.org/10.1117/12.2599177" target="_blank">https://doi.org/10.1117/12.2599177</a>
dc.identifier.otherCONVID_97950368
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/77061
dc.description.abstractWe have studied how high-energy electron irradiation (12 MeV, total dose 66 krad(Si)) and long term humidity exposure (75%, 75 ˚C, 500 hours) influence the induced junction black silicon or planar photodiode characteristics. In our case, the induced junction is formed using n-type silicon and atomic-layer deposited aluminum oxide (Al2O3), which contains a large negative fixed charge. We compare the results with corresponding planar pn-junction detectors passivated with either with silicon dioxide (SiO2) or Al2O3. The results show that the induced junction detectors remain stable as their responsivity remains nearly unaffected during the electron beam irradiation. On the other hand, the SiO2 passivated counterparts that included conventional pn-junction degrade heavily, which is seen as strongly reduced UV response. Similarly, after humidity test the response of the induced junction detector remains unaffected, while the pn-junction detectors passivated with SiO2 degrade significantly, for instance, the response at 200 nm reduces to 50% from the original value. Interestingly, the pn-junction detectors passivated with Al2O3 exhibit no degradation of UV response, indicating that the surface passivation properties of Al2O3 are more stable than SiO2 under the studied conditions. This phenomenon is further confirmed with PC1D simulations suggesting that the UV degradation results from increased surface recombination velocity. To conclude, the results presented here suggest that black silicon photodiodes containing Al2O3-based induced junction are highly promising alternatives for applications that require the best performance and long-term stability under ionizing and humid conditions.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSPIE
dc.relation.ispartofInternational Conference on Space Optics : ICSO 2020
dc.relation.ispartofseriesProceedings of SPIE : the International Society for Optical Engineering
dc.rightsIn Copyright
dc.subject.otherblack silicon
dc.subject.otherphotodiode
dc.titleImproved stability of black silicon detectors using aluminum oxide surface passivation
dc.typeconferenceObject
dc.identifier.urnURN:NBN:fi:jyu-202107084247
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-1-5106-4548-6
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.relation.issn0277-786X
dc.type.versionpublishedVersion
dc.rights.copyright© (2021) Society of Photo-Optical Instrumentation Engineers (SPIE).
dc.rights.accesslevelopenAccessfi
dc.relation.conferenceInternational Conference on Space Optics
dc.relation.grantnumber4000124504/18/NL/KML/zx
dc.subject.ysoilmaisimet
dc.subject.ysoilmankosteus
dc.subject.ysopuolijohteet
dc.subject.ysoionisoiva säteily
dc.subject.ysopiidioksidi
dc.subject.ysoalumiinioksidi
dc.subject.ysosäteilyfysiikka
dc.subject.ysoelektroniikkakomponentit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p4220
jyx.subject.urihttp://www.yso.fi/onto/yso/p6452
jyx.subject.urihttp://www.yso.fi/onto/yso/p18256
jyx.subject.urihttp://www.yso.fi/onto/yso/p459
jyx.subject.urihttp://www.yso.fi/onto/yso/p5698
jyx.subject.urihttp://www.yso.fi/onto/yso/p38971
jyx.subject.urihttp://www.yso.fi/onto/yso/p11069
jyx.subject.urihttp://www.yso.fi/onto/yso/p9652
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1117/12.2599177
dc.relation.funderEuropean Space Agencyen
dc.relation.funderEuropean Space Agencyfi
jyx.fundingprogramOthersen
jyx.fundingprogramMuutfi
jyx.fundinginformationhis work was supported by the ESA General Support Technology Programme (GSTP) [Contract No. 4000124043/18/NL/AR, Application of black silicon surface treatment to photodiodes and silicon drift detectors] and the ESA Basic Technology Research Programme (TRP) Contract Nr. [4000124504/18/NL/AR]. The Accelerator Laboratory at the University of Jyväskylä, Finland is acknowledged for the use of the RADiation Effects Facility (RADEF) for this work. Ametek Finland is acknowledged for help in detector processing. We acknowledge the provision of facilities by Aalto University at OtaNano – Micronova Nanofabrication Centre and Helsinki Institute of Physics.
dc.type.okmA4


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright