Näytä suppeat kuvailutiedot

dc.contributor.authorMatana Luza, Lucas
dc.contributor.authorSöderström, Daniel
dc.contributor.authorTsiligiannis, Georgios
dc.contributor.authorPuchner, Helmut
dc.contributor.authorCazzaniga, Carlo
dc.contributor.authorSanchez, Ernesto
dc.contributor.authorBosio, Alberto
dc.contributor.authorDilillo, Luigi
dc.contributor.editorDilillo, Luigi
dc.contributor.editorPsarakis, Mihalis
dc.contributor.editorSiddiqua, Taniya
dc.date.accessioned2021-05-04T06:21:59Z
dc.date.available2021-05-04T06:21:59Z
dc.date.issued2020
dc.identifier.citationMatana Luza, L., Söderström, D., Tsiligiannis, G., Puchner, H., Cazzaniga, C., Sanchez, E., Bosio, A., & Dilillo, L. (2020). Investigating the Impact of Radiation-Induced Soft Errors on the Reliability of Approximate Computing Systems. In L. Dilillo, M. Psarakis, & T. Siddiqua (Eds.), <i>DFT 2020 : 33rd IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems</i>. IEEE. Proceedings : IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 2020. <a href="https://doi.org/10.1109/DFT50435.2020.9250865" target="_blank">https://doi.org/10.1109/DFT50435.2020.9250865</a>
dc.identifier.otherCONVID_68030575
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/75284
dc.description.abstractApproximate Computing (AxC) is a well-known paradigm able to reduce the computational and power overheads of a multitude of applications, at the cost of a decreased accuracy. Convolutional Neural Networks (CNNs) have proven to be particularly suited for AxC because of their inherent resilience to errors. However, the implementation of AxC techniques may affect the intrinsic resilience of the application to errors induced by Single Events in a harsh environment. This work introduces an experimental study of the impact of neutron irradiation on approximate computing techniques applied on the data representation of a CNN.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofDFT 2020 : 33rd IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
dc.relation.ispartofseriesProceedings : IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems
dc.rightsIn Copyright
dc.titleInvestigating the Impact of Radiation-Induced Soft Errors on the Reliability of Approximate Computing Systems
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-202105042598
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineKiihdytinlaboratoriofi
dc.contributor.oppiaineAccelerator Laboratoryen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-1-7281-9458-5
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatusnonPeerReviewed
dc.relation.issn1550-5774
dc.type.versionacceptedVersion
dc.rights.copyright© 2020 IEEE
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceIEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
dc.relation.grantnumber721624
dc.relation.grantnumber721624
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/721624/EU//RADSAGA
dc.subject.ysoneuroverkot
dc.subject.ysomikroprosessorit
dc.subject.ysosäteilyfysiikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
jyx.subject.urihttp://www.yso.fi/onto/yso/p13435
jyx.subject.urihttp://www.yso.fi/onto/yso/p11069
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1109/DFT50435.2020.9250865
dc.relation.funderEuropean Commissionen
dc.relation.funderEuroopan komissiofi
jyx.fundingprogramMSCA Innovative Training Networks (ITN)en
jyx.fundingprogramMSCA Innovative Training Networks (ITN)fi
dc.type.okmB3


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright