Show simple item record

dc.contributor.authorParikka, Johannes M.
dc.contributor.authorSokołowska, Karolina
dc.contributor.authorMarkešević, Nemanja
dc.contributor.authorToppari, J. J.
dc.date.accessioned2021-04-19T05:43:25Z
dc.date.available2021-04-19T05:43:25Z
dc.date.issued2021
dc.identifier.citationParikka, J. M., Sokołowska, K., Markešević, N., & Toppari, J.J. (2021). Constructing Large 2D Lattices Out of DNA-Tiles. <i>Molecules</i>, <i>26</i>(6), Article 1502. <a href="https://doi.org/10.3390/molecules26061502" target="_blank">https://doi.org/10.3390/molecules26061502</a>
dc.identifier.otherCONVID_66438299
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/75108
dc.description.abstractThe predictable nature of deoxyribonucleic acid (DNA) interactions enables assembly of DNA into almost any arbitrary shape with programmable features of nanometer precision. The recent progress of DNA nanotechnology has allowed production of an even wider gamut of possible shapes with high-yield and error-free assembly processes. Most of these structures are, however, limited in size to a nanometer scale. To overcome this limitation, a plethora of studies has been carried out to form larger structures using DNA assemblies as building blocks or tiles. Therefore, DNA tiles have become one of the most widely used building blocks for engineering large, intricate structures with nanometer precision. To create even larger assemblies with highly organized patterns, scientists have developed a variety of structural design principles and assembly methods. This review first summarizes currently available DNA tile toolboxes and the basic principles of lattice formation and hierarchical self-assembly using DNA tiles. Special emphasis is given to the forces involved in the assembly process in liquid-liquid and at solid-liquid interfaces, and how to master them to reach the optimum balance between the involved interactions for successful self-assembly. In addition, we focus on the recent approaches that have shown great potential for the controlled immobilization and positioning of DNA nanostructures on different surfaces. The ability to position DNA objects in a controllable manner on technologically relevant surfaces is one step forward towards the integration of DNA-based materials into nanoelectronic and sensor devices.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherMDPI
dc.relation.ispartofseriesMolecules
dc.rightsCC BY 4.0
dc.subject.otherDNA self-assembly
dc.subject.otherDNA origami
dc.subject.otherDNA nanotechnology
dc.subject.otherlattice
dc.subject.otherhierarchy
dc.subject.othercomplexity
dc.subject.otherlithography
dc.titleConstructing Large 2D Lattices Out of DNA-Tiles
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202104192413
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bc
dc.description.reviewstatuspeerReviewed
dc.relation.issn1420-3049
dc.relation.numberinseries6
dc.relation.volume26
dc.type.versionpublishedVersion
dc.rights.copyright© 2021 by the authors.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber4602-057de
dc.subject.ysoDNA
dc.subject.ysonanotekniikka
dc.subject.ysonanorakenteet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p7690
jyx.subject.urihttp://www.yso.fi/onto/yso/p11463
jyx.subject.urihttp://www.yso.fi/onto/yso/p25315
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3390/molecules26061502
dc.relation.funderJane and Aatos Erkko Foundationen
dc.relation.funderJane ja Aatos Erkon säätiöfi
jyx.fundingprogramFoundationen
jyx.fundingprogramSäätiöfi
jyx.fundinginformationThis research was funded by Jane and Aatos Erkko Foundation.
dc.type.okmA2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0