Näytä suppeat kuvailutiedot

dc.contributor.authorLohi, Jonni
dc.contributor.authorKettunen, Lauri
dc.date.accessioned2021-03-15T07:09:42Z
dc.date.available2021-03-15T07:09:42Z
dc.date.issued2021
dc.identifier.citationLohi, J., & Kettunen, L. (2021). Whitney forms and their extensions. <i>Journal of Computational and Applied Mathematics</i>, <i>393</i>, Article 113520. <a href="https://doi.org/10.1016/j.cam.2021.113520" target="_blank">https://doi.org/10.1016/j.cam.2021.113520</a>
dc.identifier.otherCONVID_51759258
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/74625
dc.description.abstractWhitney forms are widely known as finite elements for differential forms. Whitney’s original definition yields first order functions on simplicial complexes, and a lot of research has been devoted to extending the definition to nonsimplicial cells and higher order functions. As a result, the term Whitney forms has become somewhat ambiguous in the literature. Our aim here is to clarify the concept of Whitney forms and explicitly explain their key properties. We discuss Whitney’s initial definition with more depth than usually, giving three equivalent ways to define Whitney forms. We give a comprehensive exposition of their main properties, including the proofs. Understanding of these properties is important as they can be taken as a guideline on how to extend Whitney forms to nonsimplicial cells or higher order functions. We discuss several generalisations of Whitney forms and check which of the properties can be preserved.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesJournal of Computational and Applied Mathematics
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherWhitney forms
dc.titleWhitney forms and their extensions
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202103151967
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0377-0427
dc.relation.volume393
dc.type.versionpublishedVersion
dc.rights.copyright© 2021 The Author(s). Published by Elsevier B.V.
dc.rights.accesslevelopenAccessfi
dc.subject.ysonumeerinen analyysi
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.subject.ysodifferentiaaligeometria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p15833
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
jyx.subject.urihttp://www.yso.fi/onto/yso/p16682
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.cam.2021.113520
jyx.fundinginformationUniversity of Jyväskylä.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0