Whitney forms and their extensions
Lohi, J., & Kettunen, L. (2021). Whitney forms and their extensions. Journal of Computational and Applied Mathematics, 393, Article 113520. https://doi.org/10.1016/j.cam.2021.113520
Julkaistu sarjassa
Journal of Computational and Applied MathematicsPäivämäärä
2021Tekijänoikeudet
© 2021 The Author(s). Published by Elsevier B.V.
Whitney forms are widely known as finite elements for differential forms. Whitney’s original definition yields first order functions on simplicial complexes, and a lot of research has been devoted to extending the definition to nonsimplicial cells and higher order functions. As a result, the term Whitney forms has become somewhat ambiguous in the literature. Our aim here is to clarify the concept of Whitney forms and explicitly explain their key properties. We discuss Whitney’s initial definition with more depth than usually, giving three equivalent ways to define Whitney forms. We give a comprehensive exposition of their main properties, including the proofs. Understanding of these properties is important as they can be taken as a guideline on how to extend Whitney forms to nonsimplicial cells or higher order functions. We discuss several generalisations of Whitney forms and check which of the properties can be preserved.
Julkaisija
ElsevierISSN Hae Julkaisufoorumista
0377-0427Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/51759258
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
University of Jyväskylä.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Fully reliable a posteriori error control for evolutionary problems
Matculevich, Svetlana (University of Jyväskylä, 2015) -
On a numerical solution of the Maxwell equations by discrete exterior calculus
Räbinä, Jukka (University of Jyväskylä, 2014) -
A posteriori error control for Maxwell and elliptic type problems
Anjam, Immanuel (University of Jyväskylä, 2014) -
Analysis of errors caused by incomplete knowledge of material data in mathematical models of elastic media
Mali, Olli (University of Jyväskylä, 2011) -
GPU-accelerated time integration of Gross-Pitaevskii equation with discrete exterior calculus
Kivioja, Markus; Mönkölä, Sanna; Rossi, Tuomo (Elsevier BV, 2022)The quantized vortices in superfluids are modeled by the Gross-Pitaevskii equation whose numerical time integration is instrumental in the physics studies of such systems. In this paper, we present a reliable numerical ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.