A posteriori estimates for a coupled piezoelectric model
Langer, U., Repin, S., & Samrowski, T. (2017). A posteriori estimates for a coupled piezoelectric model. Russian Journal of Numerical Analysis and Mathematical Modelling, 32(4), 259-266. https://doi.org/10.1515/rnam-2017-0025
Julkaistu sarjassa
Russian Journal of Numerical Analysis and Mathematical ModellingPäivämäärä
2017Tekijänoikeudet
© 2017 Walter de Gruyter GmbH, Berlin/Boston. This is a final draft version of an article whose final and definitive form has been published by de Gryuter. Published in this repository with the kind permission of the publisher.
The paper is concerned with a coupled problem describing piesoelectric effects in an elastic
body. For this problem, we deduce majorants of the distance between the exact solution and any approximation
in the respective energy class of functions satisfying the boundary conditions. The majorants are
fully computable and does not contain mesh dependent constants. They vanish if and only if an approximate
solution coincides with the exact one and provide a realistic measure of the accuracy in terms of the natural
energy norm associated with the coupled problem studied.
Julkaisija
Walter de Gruyter GmbHISSN Hae Julkaisufoorumista
0927-6467Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/27173358
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Analysis of errors caused by incomplete knowledge of material data in mathematical models of elastic media
Mali, Olli (University of Jyväskylä, 2011) -
On the a posteriori error analysis for linear Fokker-Planck models in convection-dominated diffusion problems
Matculevich, Svetlana; Wolfmayr, Monika (Elsevier, 2018)This work is aimed at the derivation of reliable and efficient a posteriori error estimates for convection-dominated diffusion problems motivated by a linear Fokker–Planck problem appearing in computational neuroscience. ... -
Fully reliable a posteriori error control for evolutionary problems
Matculevich, Svetlana (University of Jyväskylä, 2015) -
A posteriori error control for Maxwell and elliptic type problems
Anjam, Immanuel (University of Jyväskylä, 2014) -
Interacting Electrons in a Flat‐Band System within the Generalized Kadanoff–Baym Ansatz
Cosco, Francesco; Tuovinen, Riku; Lo Gullo, Nicolino (Wiley-VCH Verlag, 2024)In this work, the study of the spectral properties of an open interacting system by solving the generalized Kadanoff-Baym ansatz (GKBA) master equation for the single-particle density matrix, namely the time-diagonal lesser ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.