dc.contributor.advisor | Vähäkangas, Antti | |
dc.contributor.author | Lehtikangas, Vilppu | |
dc.date.accessioned | 2021-03-08T08:32:18Z | |
dc.date.available | 2021-03-08T08:32:18Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/74515 | |
dc.description.abstract | Tämän tutkielman tarkoituksena on rakentaa moduulien teoria ryhmä- ja rengasteorian alkeista lähtien, sekä osoittaa pääideaalialueiden moduulien päälause.
Moduuli on joukko G varustettuna yhteenlaskutoimituksella, joka tekee siitä abelin ryhmän, sekä toiminnaksi kutsutulla kuvauksella joka liittää jokaiseen G:n kertoimien renkaan alkioon ja G:n alkioon jonkin G:n alkion. Toiminnan määritellään myös toteuttavan vektoriavaruuksien tunnetut distributiivisuusominaisuudet, jolloin se yleistää vektoriavaruuden skalaaritulon käsitteen yleiselle renkaalle. Näin ollen vektoriavaruuden yleisen määritelmän nojalla vektoriavaruudet ovat täsmälleen kuntakertoimisia moduuleja. Osoittautuu, että myös abelin ryhmät ja renkaat ovat moduuleja, joiden kerroinrenkaina ovat vastaavasti kokonaislukujen rengas, sekä rengas itse. Tulemme huomaamaan, että monet ryhmä- ja rengasteorian tuloksista yleistyvät myös moduuleille.
Tutkimme, kuinka moduulin kerroinrenkaan rakenne vaikuttaa itse moduulin ominaisuuksiin. Tulemme osoittamaan, että pääideaalialueitten tapauksessa jokainen pääideaalialueen moduuli voidaan esittää yksikäsitteisesti suorana summana vapaasta moduulista, eli moduulista jolla on vektoriavaruuden tavoin kanta, sekä äärellisen monesta syklisestä tekijämoduulista. Tarkastelemme lopuksi lyhyesti joitain tämän pääideaalimoduulien päälauseeksi kutsutun tuloksen sovelluksia, kuten äärellisesti viritettyjen abelin ryhmien päälausetta, sekä neliömatriisin Jordanin kanonista muotoa. | fi |
dc.format.extent | 75 | |
dc.format.mimetype | application/pdf | |
dc.language.iso | fi | |
dc.rights | In Copyright | en |
dc.subject.other | moduuli | |
dc.subject.other | ryhmä | |
dc.subject.other | rengas | |
dc.subject.other | ideaali | |
dc.subject.other | pääideaalialue | |
dc.title | Pääideaalialueen moduulien päälause | |
dc.type | master thesis | |
dc.identifier.urn | URN:NBN:fi:jyu-202103081872 | |
dc.type.ontasot | Pro gradu -tutkielma | fi |
dc.type.ontasot | Master’s thesis | en |
dc.contributor.tiedekunta | Matemaattis-luonnontieteellinen tiedekunta | fi |
dc.contributor.tiedekunta | Faculty of Sciences | en |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.yliopisto | Jyväskylän yliopisto | fi |
dc.contributor.yliopisto | University of Jyväskylä | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.rights.accesslevel | openAccess | |
dc.type.publication | masterThesis | |
dc.contributor.oppiainekoodi | 4041 | |
dc.subject.yso | abstrakti algebra | |
dc.subject.yso | algebra | |
dc.format.content | fulltext | |
dc.rights.url | https://rightsstatements.org/page/InC/1.0/ | |
dc.type.okm | G2 | |