Näytä suppeat kuvailutiedot

dc.contributor.authorZhang, Yindong
dc.contributor.authorKhriyenko, Oleksiy
dc.contributor.editorBalandin, Sergey
dc.contributor.editorDeart, Vladimir
dc.contributor.editorTyutina, Tatiana
dc.date.accessioned2021-02-16T12:51:28Z
dc.date.available2021-02-16T12:51:28Z
dc.date.issued2021
dc.identifier.citationZhang, Y., & Khriyenko, O. (2021). Zero-shot Semantic Segmentation using Relation Network. In S. Balandin, V. Deart, & T. Tyutina (Eds.), <i>FRUCT '28 : Proceedings of the 28th Conference of Open Innovations Association FRUCT</i> (pp. 516-527). FRUCT Oy. Proceedings of Conference of Open Innovations Association FRUCT. <a href="https://doi.org/10.23919/FRUCT50888.2021.9347619" target="_blank">https://doi.org/10.23919/FRUCT50888.2021.9347619</a>
dc.identifier.otherCONVID_51498043
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/74258
dc.description.abstractZero-shot learning (ZSL) is widely studied in recent years to solve the problem of lacking annotations. Currently, most studies on ZSL are for image classification and object detection. But, zero-shot semantic segmentation, pixel level classification, is still at its early stage. Therefore, this work proposes to extend a zero-shot image classification model, Relation Network (RN), to semantic segmentation tasks. We modified the structure of RN based on other state-of-the-arts semantic segmentation models (i.e. U-Net and DeepLab) and utilizes word embeddings from Caltech-UCSD Birds 200-2011 attributes and natural language processing models (i.e. word2vec and fastText). Because meta-learning is limited to binary tasks, this work proposes to join multiple binary semantic segmentation pipelines for multi-class semantic segmentation. It is proved by experiments that RN could improve accuracy of U-Net with the help of semantic side information on binary semantic segmentation and it could also be applied on multi-class semantic segmentation with simpler structure than the baseline model, SPNet, but higher accuracy under ZSL setting. However, the capability of RN under generalized zero-shot learning (GZSL) setting still needs improvement. We also studied on how different word embeddings, network structures and data affect RN and what could be done to improve its results.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherFRUCT Oy
dc.relation.ispartofFRUCT '28 : Proceedings of the 28th Conference of Open Innovations Association FRUCT
dc.relation.ispartofseriesProceedings of Conference of Open Innovations Association FRUCT
dc.relation.urihttps://fruct.org/publications/fruct28/files/Zha.pdf
dc.rightsCC BY-ND 4.0
dc.subject.otherdeep learning
dc.subject.otherimage segmentation
dc.subject.otherzero-shot semantic segmentation
dc.titleZero-shot Semantic Segmentation using Relation Network
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-202102161673
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-952-69244-4-1
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange516-527
dc.relation.issn2305-7254
dc.type.versionpublishedVersion
dc.rights.copyright© 2021 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceConference of Open Innovations Association
dc.subject.ysokonenäkö
dc.subject.ysokoneoppiminen
dc.subject.ysohahmontunnistus (tietotekniikka)
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p2618
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p8266
dc.rights.urlhttps://creativecommons.org/licenses/by-nd/4.0/
dc.relation.doi10.23919/FRUCT50888.2021.9347619
dc.type.okmA4


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-ND 4.0