BRIMA : Low-Overhead Browser-Only Image Annotation Tool
Lahtinen, T., Turtiainen, H., & Costin, A. (2021). BRIMA : Low-Overhead Browser-Only Image Annotation Tool. In ICIP 2021 : Proceedings of the 28th IEEE International Conference on Image Processing (pp. 2633-2637). IEEE. Proceedings : International Conference on Image Processing. https://doi.org/10.1109/icip42928.2021.9506683
Julkaistu sarjassa
Proceedings : International Conference on Image ProcessingPäivämäärä
2021Tekijänoikeudet
© 2021 IEEE
Image annotation and large annotated datasets are crucial parts within the Computer Vision and Artificial Intelligence fields. At the same time, it is well-known and acknowledged by the research community that the image annotation process is challenging, time-consuming and hard to scale. Therefore, the researchers and practitioners are always seeking ways to perform the annotations easier, faster, and at higher quality. Even though several widely used tools exist and the tools’ landscape evolved considerably, most of the tools still require intricate technical setups and high levels of technical savviness from its operators and crowdsource contributors.In order to address such challenges, we develop and present BRIMA – a flexible and open-source browser extension that allows BRowser-only IMage Annotation at considerably lower overheads. Once added to the browser, it instantly allows the user to annotate images easily and efficiently directly from the browser without any installation or setup on the client-side. It also features cross-browser and cross-platform functionality thus presenting itself as a neat tool for researchers within the Computer Vision, Artificial Intelligence, and privacy-related fields.
...
Julkaisija
IEEEEmojulkaisun ISBN
978-1-6654-3102-6Konferenssi
IEEE International Conference on Image ProcessingKuuluu julkaisuun
ICIP 2021 : Proceedings of the 28th IEEE International Conference on Image ProcessingISSN Hae Julkaisufoorumista
1522-4880Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/99027000
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
Authors acknowledge grants of computer capacity from the Finnish Grid and Cloud Infrastructure (FGCI) (persistent identifier urn:nbn:fi:research-infras-2016072533). Part of this research was kindly supported by the “Decision of the Research Dean on research funding within the Faculty (17.06.2020)” (the grant from Faculty of Information was facilitated and managed by Dr. Andrei Costin). Hannu Turtiainen also thanks The Finnish Cultural Foundation / Suomen Kulttuurirahasto (https://skr.fi/en) for supporting his Ph.D. research (grant decision 00211119), and The Faculty of Information Technology, in particular Prof. Timo Hamäläinen, for partly supporting his Ph.D. supervission at JYU in 2021. ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Selaimen sormenjälkitunnistamisen torjunta käyttöjärjestelmäavusteisella virtualisoinnilla
Moisio, Juha (2017)Selaimen sormenjälkitunnistaminen mahdollistaa käyttäjien seurannan käyttäjien yksityisyyttä luokkaavasti. Tutkielmassa selvitetään voidaanko käyttöjärjestelmäavusteisilla virtualisointiteknologioilla vastata selaimen ... -
Automatic social distance estimation for photographic studies : Performance evaluation, test benchmark, and algorithm
Seker, Mert; Männistö, Anssi; Iosifidis, Alexandros; Raitoharju, Jenni (Elsevier, 2022)The social distancing regulations introduced to slow down the spread of COVID-19 virus directly affect a basic form of non-verbal communication, and there may be longer term impacts on human behavior and culture that remain ... -
Zero-shot Semantic Segmentation using Relation Network
Zhang, Yindong; Khriyenko, Oleksiy (FRUCT Oy, 2021)Zero-shot learning (ZSL) is widely studied in recent years to solve the problem of lacking annotations. Currently, most studies on ZSL are for image classification and object detection. But, zero-shot semantic segmentation, ... -
CCTVCV : Computer Vision model/dataset supporting CCTV forensics and privacy applications
Turtiainen, Hannu; Costin, Andrei; Hämäläinen, Timo; Lahtinen, Tuomo; Sintonen, Lauri (IEEE, 2022)The increased, widespread, unwarranted, and unaccountable use of Closed-Circuit TeleVision (CCTV) cameras globally has raised concerns about privacy risks for the last several decades. Recent technological advances implemented ... -
Browsing and navigating web applications with mobile devices
Hyvärinen, Tuuli (2004)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.