Zero-shot Semantic Segmentation using Relation Network
Zhang, Y., & Khriyenko, O. (2021). Zero-shot Semantic Segmentation using Relation Network. In S. Balandin, V. Deart, & T. Tyutina (Eds.), FRUCT '28 : Proceedings of the 28th Conference of Open Innovations Association FRUCT (pp. 516-527). FRUCT Oy. Proceedings of Conference of Open Innovations Association FRUCT. https://doi.org/10.23919/FRUCT50888.2021.9347619
Julkaistu sarjassa
Proceedings of Conference of Open Innovations Association FRUCTPäivämäärä
2021Tekijänoikeudet
© 2021 the Authors
Zero-shot learning (ZSL) is widely studied in recent years to solve the problem of lacking annotations. Currently, most studies on ZSL are for image classification and object detection. But, zero-shot semantic segmentation, pixel level classification, is still at its early stage. Therefore, this work proposes to extend a zero-shot image classification model, Relation Network (RN), to semantic segmentation tasks. We modified the structure of RN based on other state-of-the-arts semantic segmentation models (i.e. U-Net and DeepLab) and utilizes word embeddings from Caltech-UCSD Birds 200-2011 attributes and natural language processing models (i.e. word2vec and fastText). Because meta-learning is limited to binary tasks, this work proposes to join multiple binary semantic segmentation pipelines for multi-class semantic segmentation. It is proved by experiments that RN could improve accuracy of U-Net with the help of semantic side information on binary semantic segmentation and it could also be applied on multi-class semantic segmentation with simpler structure than the baseline model, SPNet, but higher accuracy under ZSL setting. However, the capability of RN under generalized zero-shot learning (GZSL) setting still needs improvement. We also studied on how different word embeddings, network structures and data affect RN and what could be done to improve its results.
...
Julkaisija
FRUCT OyEmojulkaisun ISBN
978-952-69244-4-1Konferenssi
Conference of Open Innovations AssociationKuuluu julkaisuun
FRUCT '28 : Proceedings of the 28th Conference of Open Innovations Association FRUCTISSN Hae Julkaisufoorumista
2305-7254Asiasanat
Alkuperäislähde
https://fruct.org/publications/fruct28/files/Zha.pdfJulkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/51498043
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Automatic social distance estimation for photographic studies : Performance evaluation, test benchmark, and algorithm
Seker, Mert; Männistö, Anssi; Iosifidis, Alexandros; Raitoharju, Jenni (Elsevier, 2022)The social distancing regulations introduced to slow down the spread of COVID-19 virus directly affect a basic form of non-verbal communication, and there may be longer term impacts on human behavior and culture that remain ... -
Zero-shot semantic segmentation using relation network
Zhang, Yindong (2020)Zero-shot learning (ZSL) is widely studied in recent years to solve the problem of lacking annotations. Currently, most studies on ZSL are for image classification and object detection. But zero-shot semantic segmentation, ... -
Mäkihypyn ponnistusvaiheen biomekaniikka hahmon asennon tunnistamiseen perustuvalla liikeanalyysillä
Virtanen, Lauri (2021)Mäkihyppy on Suomessa perinteikäs laji, jossa on totuttu kansainväliseen menestykseen arvokisoissa. Mäkihyppyä on tutkittu jo 1900-alkupuolelta alkaen ja vilkkain tutkimusaikakausi sijoittunee vähän 2000-luvun molemmin ... -
BRIMA : Low-Overhead Browser-Only Image Annotation Tool
Lahtinen, Tuomo; Turtiainen, Hannu; Costin, Andrei (IEEE, 2021)Image annotation and large annotated datasets are crucial parts within the Computer Vision and Artificial Intelligence fields. At the same time, it is well-known and acknowledged by the research community that the image ... -
Koneoppimisen hyödyntäminen metsä- ja maastopalojen havaitsemisessa droneilmakuvista
Tarvainen, Anni (2023)Kandidaatintutkielmassa käsitellään koneoppimisalgoritmien hyödyntämistä metsä- ja maastopalojen havaitsemiseen droneilmakuvista. Tutkielma on kirjallisuuskatsaus, ja sen tavoitteena on pohtia, kuinka toimiva ratkaisu ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.