Näytä suppeat kuvailutiedot

dc.contributor.authorDavid, Guy C.
dc.contributor.authorLe Donne, Enrico
dc.date.accessioned2021-02-04T08:17:53Z
dc.date.available2021-02-04T08:17:53Z
dc.date.issued2020
dc.identifier.citationDavid, G. C., & Le Donne, E. (2020). A note on topological dimension, Hausdorff measure, and rectifiability. <i>Proceedings of the American Mathematical Society</i>, <i>148</i>(10), 4299-4304. <a href="https://doi.org/10.1090/proc/15051" target="_blank">https://doi.org/10.1090/proc/15051</a>
dc.identifier.otherCONVID_42016805
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/73974
dc.description.abstractWe give a sufficient condition for a general compact metric space to admit an n-rectifiable piece, as a consequence of a recent result of David Bate. Let X be a compact metric space of topological dimension n. Suppose that the n-dimensional Hausdorff measure of X, H-n (X), is finite. Suppose further that the lower n-density of the measure H-n is positive, H-n-almost everywhere in X. Then X contains an n-rectifiable subset of positive H-n-measure. Moreover, the assumption on the lower density is unnecessary if one uses recently announced results of Csornyei-Jones.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherAmerican Mathematical Society
dc.relation.ispartofseriesProceedings of the American Mathematical Society
dc.rightsCC BY-NC-ND 4.0
dc.titleA note on topological dimension, Hausdorff measure, and rectifiability
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202102041421
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineGeometrinen analyysi ja matemaattinen fysiikkafi
dc.contributor.oppiaineAnalyysin ja dynamiikan tutkimuksen huippuyksikköfi
dc.contributor.oppiaineMathematicsen
dc.contributor.oppiaineGeometric Analysis and Mathematical Physicsen
dc.contributor.oppiaineAnalysis and Dynamics Research (Centre of Excellence)en
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange4299-4304
dc.relation.issn0002-9939
dc.relation.numberinseries10
dc.relation.volume148
dc.type.versionacceptedVersion
dc.rights.copyright© 2020 American Mathematical Society
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber288501
dc.relation.grantnumber713998
dc.relation.grantnumber713998
dc.relation.grantnumber322898
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/713998/EU//GeoMeG
dc.subject.ysomittateoria
dc.subject.ysofunktioteoria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p13386
jyx.subject.urihttp://www.yso.fi/onto/yso/p18494
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1090/proc/15051
dc.relation.funderResearch Council of Finlanden
dc.relation.funderEuropean Commissionen
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuroopan komissiofi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramERC Starting Granten
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundingprogramERC Starting Grantfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThe first author was supported by the National Science Foundation under Grant no. NSF DMS-1758709. The second author was partially supported by the Academy of Finland (grant 288501 ‘Geometry of subRiemannian groups’ and by grant 322898 ‘Sub-Riemannian Geometry via Metric-geometry and Lie-group Theory’) and by the European Research Council (ERC Starting Grant 713998 GeoMeG ‘Geometry of Metric Groups’).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0