dc.contributor.author | David, Guy C. | |
dc.contributor.author | Le Donne, Enrico | |
dc.date.accessioned | 2021-02-04T08:17:53Z | |
dc.date.available | 2021-02-04T08:17:53Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | David, G. C., & Le Donne, E. (2020). A note on topological dimension, Hausdorff measure, and rectifiability. <i>Proceedings of the American Mathematical Society</i>, <i>148</i>(10), 4299-4304. <a href="https://doi.org/10.1090/proc/15051" target="_blank">https://doi.org/10.1090/proc/15051</a> | |
dc.identifier.other | CONVID_42016805 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/73974 | |
dc.description.abstract | We give a sufficient condition for a general compact metric space to admit an n-rectifiable piece, as a consequence of a recent result of David Bate. Let X be a compact metric space of topological dimension n. Suppose that the n-dimensional Hausdorff measure of X, H-n (X), is finite. Suppose further that the lower n-density of the measure H-n is positive, H-n-almost everywhere in X. Then X contains an n-rectifiable subset of positive H-n-measure. Moreover, the assumption on the lower density is unnecessary if one uses recently announced results of Csornyei-Jones. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | American Mathematical Society | |
dc.relation.ispartofseries | Proceedings of the American Mathematical Society | |
dc.rights | CC BY-NC-ND 4.0 | |
dc.title | A note on topological dimension, Hausdorff measure, and rectifiability | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202102041421 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Geometrinen analyysi ja matemaattinen fysiikka | fi |
dc.contributor.oppiaine | Analyysin ja dynamiikan tutkimuksen huippuyksikkö | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.contributor.oppiaine | Geometric Analysis and Mathematical Physics | en |
dc.contributor.oppiaine | Analysis and Dynamics Research (Centre of Excellence) | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 4299-4304 | |
dc.relation.issn | 0002-9939 | |
dc.relation.numberinseries | 10 | |
dc.relation.volume | 148 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2020 American Mathematical Society | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 288501 | |
dc.relation.grantnumber | 713998 | |
dc.relation.grantnumber | 713998 | |
dc.relation.grantnumber | 322898 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/713998/EU//GeoMeG | |
dc.subject.yso | mittateoria | |
dc.subject.yso | funktioteoria | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13386 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p18494 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.relation.doi | 10.1090/proc/15051 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | European Commission | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Euroopan komissio | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Research Fellow, AoF | en |
jyx.fundingprogram | ERC Starting Grant | en |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Akatemiatutkija, SA | fi |
jyx.fundingprogram | ERC Starting Grant | fi |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundinginformation | The first author was supported by the National Science Foundation under Grant no. NSF DMS-1758709.
The second author was partially supported by the Academy of Finland (grant 288501 ‘Geometry of subRiemannian groups’ and by grant 322898 ‘Sub-Riemannian Geometry via Metric-geometry and Lie-group Theory’) and by the European Research Council (ERC Starting Grant 713998 GeoMeG ‘Geometry of Metric Groups’). | |
dc.type.okm | A1 | |