Consistency of Independent Component Analysis for FMRI
Zhao, W., Li, H., Hu, G., Hao, Y., Zhang, Q., Wu, J., Frederick, B. B., & Cong, F. (2021). Consistency of Independent Component Analysis for FMRI. Journal of Neuroscience Methods, 351, Article 109013. https://doi.org/10.1016/j.jneumeth.2020.109013
Julkaistu sarjassa
Journal of Neuroscience MethodsTekijät
Päivämäärä
2021Tekijänoikeudet
© 2020 Elsevier B.V.
Background
Independent component analysis (ICA) has been widely used for blind source separation in the field of medical imaging. However, despite of previous substantial efforts, the stability of ICA components remains a critical issue which has not been adequately addressed, despite numerous previous efforts. Most critical is the inconsistency of some of the extracted components when ICA is run with different model orders (MOs).
New Method
In this study, a novel method of determining the consistency of component analysis (CoCA) is proposed to evaluate the consistency of extracted components with different model orders. In the method, “consistent components” (CCs) are defined as those which can be extracted repeatably over a range of model orders.
Result
The efficacy of the method was evaluated with simulation data and fMRI datasets. With our method, the simulation result showed a clear difference of consistency between ground truths and noise.
Comparison with existing methods
The information criteria were implemented to provide suggestions for the optimal model order, where some of the ICs were revealed inconsistent in our proposed method.
Conclusions
This method provided an objective protocol for choosing CCs of an ICA decomposition of a data matrix, independent of model order. This is especially useful with high model orders, where noise or other disturbances could possibly lead to an instability of the components.
...
Julkaisija
Elsevier BVISSN Hae Julkaisufoorumista
0165-0270Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/47413569
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This work was supported by National Natural Science Foundation of China (Grant Nos. 91748105 & 81601484), and National Foundation in China (Nos. JCKY 2019110B009 & 2020-JCJQ-JJ-252), and the scholarships from China Scholarship Council (No. 202006060130), and the Fundamental Research Funds for the Central Universities [DUT2019, DUT20LAB303] in Dalian University of Technology in China.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Snowball ICA : A Model Order Free Independent Component Analysis Strategy for Functional Magnetic Resonance Imaging Data
Hu, Guoqiang; Waters, Abigail B.; Aslan, Serdar; Frederick, Blaise; Cong, Fengyu; Nickerson, Lisa D. (Frontiers Media, 2020)In independent component analysis (ICA), the selection of model order (i.e., number of components to be extracted) has crucial effects on functional magnetic resonance imaging (fMRI) brain network analysis. Model order ... -
Tensor clustering on outer-product of coefficient and component matrices of independent component analysis for reliable functional magnetic resonance imaging data decomposition
Hu, Guoqiang; Zhang, Qing; Waters, Abigail B.; Li, Huanjie; Zhang, Chi; Wu, Jianlin; Cong, Fengyu; Nickerson, Lisa D. (Elsevier BV, 2019)Background. Stability of spatial components is frequently used as a post-hoc selection criteria for choosing the dimensionality of an independent component analysis (ICA) of functional magnetic resonance imaging (fMRI) ... -
Discovering hidden brain network responses to naturalistic stimuli via tensor component analysis of multi-subject fMRI data
Hu, Guoqiang; Li, Huanjie; Zhao, Wei; Hao, Yuxing; Bai, Zonglei; Nickerson, Lisa D.; Cong, Fengyu (Elsevier, 2022)The study of brain network interactions during naturalistic stimuli facilitates a deeper understanding of human brain function. To estimate large-scale brain networks evoked with naturalistic stimuli, a tensor component ... -
Denoising brain networks using a fixed mathematical phase change in independent component analysis of magnitude-only fMRI data
Zhang, Chao‐Ying; Lin, Qiu‐Hua; Niu, Yan‐Wei; Li, Wei‐Xing; Gong, Xiao‐Feng; Cong, Fengyu; Wang, Yu‐Ping; Calhoun, Vince D. (Wiley, 2023)Brain networks extracted by independent component analysis (ICA) from magnitude-only fMRI data are usually denoised using various amplitude-based thresholds. By contrast, spatial source phase (SSP) or the phase information ... -
Removal of site effects and enhancement of signal using dual projection independent component analysis for pooling multi‐site MRI data
Hao, Yuxing; Xu, Huashuai; Xia, Mingrui; Yan, Chenwei; Zhang, Yunge; Zhou, Dongyue; Kärkkäinen, Tommi; Nickerson, Lisa D.; Li, Huanjie; Cong, Fengyu (Wiley-Blackwell, 2023)Combining magnetic resonance imaging (MRI) data from multi-site studies is a popular approach for constructing larger datasets to greatly enhance the reliability and reproducibility of neuroscience research. However, the ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.