dc.contributor.author | Zhao, Wei | |
dc.contributor.author | Li, Huanjie | |
dc.contributor.author | Hu, Guoqiang | |
dc.contributor.author | Hao, Yuxing | |
dc.contributor.author | Zhang, Qing | |
dc.contributor.author | Wu, Jianlin | |
dc.contributor.author | Frederick, Blaise B. | |
dc.contributor.author | Cong, Fengyu | |
dc.date.accessioned | 2021-02-01T08:32:16Z | |
dc.date.available | 2021-02-01T08:32:16Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Zhao, W., Li, H., Hu, G., Hao, Y., Zhang, Q., Wu, J., Frederick, B. B., & Cong, F. (2021). Consistency of Independent Component Analysis for FMRI. <i>Journal of Neuroscience Methods</i>, <i>351</i>, Article 109013. <a href="https://doi.org/10.1016/j.jneumeth.2020.109013" target="_blank">https://doi.org/10.1016/j.jneumeth.2020.109013</a> | |
dc.identifier.other | CONVID_47413569 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/73899 | |
dc.description.abstract | Background
Independent component analysis (ICA) has been widely used for blind source separation in the field of medical imaging. However, despite of previous substantial efforts, the stability of ICA components remains a critical issue which has not been adequately addressed, despite numerous previous efforts. Most critical is the inconsistency of some of the extracted components when ICA is run with different model orders (MOs).
New Method
In this study, a novel method of determining the consistency of component analysis (CoCA) is proposed to evaluate the consistency of extracted components with different model orders. In the method, “consistent components” (CCs) are defined as those which can be extracted repeatably over a range of model orders.
Result
The efficacy of the method was evaluated with simulation data and fMRI datasets. With our method, the simulation result showed a clear difference of consistency between ground truths and noise.
Comparison with existing methods
The information criteria were implemented to provide suggestions for the optimal model order, where some of the ICs were revealed inconsistent in our proposed method.
Conclusions
This method provided an objective protocol for choosing CCs of an ICA decomposition of a data matrix, independent of model order. This is especially useful with high model orders, where noise or other disturbances could possibly lead to an instability of the components. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | Elsevier BV | |
dc.relation.ispartofseries | Journal of Neuroscience Methods | |
dc.rights | CC BY-NC-ND 4.0 | |
dc.subject.other | consistency | |
dc.subject.other | model order | |
dc.subject.other | ICA | |
dc.subject.other | fMRI | |
dc.title | Consistency of Independent Component Analysis for FMRI | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202102011357 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0165-0270 | |
dc.relation.volume | 351 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2020 Elsevier B.V. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | signaalinkäsittely | |
dc.subject.yso | toiminnallinen magneettikuvaus | |
dc.subject.yso | signaalianalyysi | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12266 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p24211 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26805 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.relation.doi | 10.1016/j.jneumeth.2020.109013 | |
jyx.fundinginformation | This work was supported by National Natural Science Foundation of China (Grant Nos. 91748105 & 81601484), and National Foundation in China (Nos. JCKY 2019110B009 & 2020-JCJQ-JJ-252), and the scholarships from China Scholarship Council (No. 202006060130), and the Fundamental Research Funds for the Central Universities [DUT2019, DUT20LAB303] in Dalian University of Technology in China. | |
dc.type.okm | A1 | |