Show simple item record

dc.contributor.authorKuznetsov, Nikolay V.
dc.contributor.authorLobachev, Mikhail Y.
dc.contributor.authorYuldashev, Marat V.
dc.contributor.authorYuldashev, Renat V.
dc.date.accessioned2020-11-24T11:22:43Z
dc.date.available2020-11-24T11:22:43Z
dc.date.issued2021
dc.identifier.citationKuznetsov, N. V., Lobachev, M. Y., Yuldashev, M. V., & Yuldashev, R. V. (2021). The Egan problem on the pull-in range of type 2 PLLs. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i>, <i>68</i>(4), 1467-1471. <a href="https://doi.org/10.1109/tcsii.2020.3038075" target="_blank">https://doi.org/10.1109/tcsii.2020.3038075</a>
dc.identifier.otherCONVID_47039198
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/72785
dc.description.abstractIn 1981, famous engineer William F. Egan conjectured that a higher-order type 2 PLL with an infinite hold-in range also has an infinite pull-in range, and supported his conjecture with some third-order PLL implementations. Although it is known that for the second-order type 2 PLLs the hold-in range and the pull-in range are both infinite, the present paper shows that the Egan conjecture may be not valid in general. We provide an implementation of the third-order type 2 PLL, which has an infinite hold-in range and experiences stable oscillations. This implementation and the Egan conjecture naturally pose a problem, which we will call the Egan problem: to determine a class of type 2 PLLs for which an infinite hold-in range implies an infinite pull-in range. Using the direct Lyapunov method for the cylindrical phase space we suggest a sufficient condition of the pull-in range infiniteness, which provides a solution to the Egan problem.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.ispartofseriesIEEE Transactions on Circuits and Systems II: Express Briefs
dc.rightsCC BY 4.0
dc.subject.otherphase-locked loop
dc.subject.otherPLL
dc.subject.othertype II
dc.subject.othertype 2
dc.subject.otherhold-in range
dc.subject.otherEgan conjecture
dc.subject.otherEgan problem on the pull-in range
dc.subject.otherGardner problem on the lock-in range
dc.subject.otherLyapunov functions
dc.subject.othernonlinear analysis
dc.subject.otherglobal stability
dc.subject.otherdescribing function
dc.subject.otherharmonic balance method
dc.titleThe Egan problem on the pull-in range of type 2 PLLs
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202011246748
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1467-1471
dc.relation.issn1549-7747
dc.relation.numberinseries4
dc.relation.volume68
dc.type.versionpublishedVersion
dc.rights.copyright© 2020 the Authors
dc.rights.accesslevelopenAccessfi
dc.subject.ysosäätöteoria
dc.subject.ysodifferentiaaliyhtälöt
dc.subject.ysovärähtelyt
dc.subject.ysoelektroniset piirit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p868
jyx.subject.urihttp://www.yso.fi/onto/yso/p3552
jyx.subject.urihttp://www.yso.fi/onto/yso/p708
jyx.subject.urihttp://www.yso.fi/onto/yso/p953
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1109/tcsii.2020.3038075
jyx.fundinginformationThe work is supported by the Russian Science Foundation (project 19-41-02002).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0