dc.contributor.author | Di Marino, Simone | |
dc.contributor.author | Gigli, Nicola | |
dc.contributor.author | Pasqualetto, Enrico | |
dc.contributor.author | Soultanis, Elefterios | |
dc.date.accessioned | 2020-11-09T12:05:56Z | |
dc.date.available | 2020-11-09T12:05:56Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Di Marino, S., Gigli, N., Pasqualetto, E., & Soultanis, E. (2021). Infinitesimal Hilbertianity of Locally CAT(κ)-Spaces. <i>Journal of Geometric Analysis</i>, <i>31</i>(8), 7621-7685. <a href="https://doi.org/10.1007/s12220-020-00543-7" target="_blank">https://doi.org/10.1007/s12220-020-00543-7</a> | |
dc.identifier.other | CONVID_43536864 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/72532 | |
dc.description.abstract | We show that, given a metric space (Y,d)(Y,d) of curvature bounded from above in the sense of Alexandrov, and a positive Radon measure μμ on YY giving finite mass to bounded sets, the resulting metric measure space (Y,d,μ)(Y,d,μ) is infinitesimally Hilbertian, i.e. the Sobolev space W1,2(Y,d,μ)W1,2(Y,d,μ) is a Hilbert space. The result is obtained by constructing an isometric embedding of the ‘abstract and analytical’ space of derivations into the ‘concrete and geometrical’ bundle whose fibre at x∈Yx∈Y is the tangent cone at x of YY. The conclusion then follows from the fact that for every x∈Yx∈Y such a cone is a CAT(0)CAT(0) space and, as such, has a Hilbert-like structure. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartofseries | Journal of Geometric Analysis | |
dc.rights | CC BY 4.0 | |
dc.subject.other | CAT spaces | |
dc.subject.other | Sobolev spaces | |
dc.subject.other | metric geometry | |
dc.title | Infinitesimal Hilbertianity of Locally CAT(κ)-Spaces | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202011096565 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 7621-7685 | |
dc.relation.issn | 1050-6926 | |
dc.relation.numberinseries | 8 | |
dc.relation.volume | 31 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © The Author(s) 2020 | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | metriset avaruudet | |
dc.subject.yso | geometria | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27753 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p8708 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1007/s12220-020-00543-7 | |
jyx.fundinginformation | This research has been supported by the MIUR SIR-Grant ‘Nonsmooth Differential Geometry’ (RBSI147UG4). Open access funding provided by Scuola Internazionale Superiore di Studi Avanzati – SISSA within the CRUI-CARE Agreement. | |
dc.type.okm | A1 | |