Näytä suppeat kuvailutiedot

dc.contributor.authorDi Marino, Simone
dc.contributor.authorGigli, Nicola
dc.contributor.authorPasqualetto, Enrico
dc.contributor.authorSoultanis, Elefterios
dc.date.accessioned2020-11-09T12:05:56Z
dc.date.available2020-11-09T12:05:56Z
dc.date.issued2021
dc.identifier.citationDi Marino, S., Gigli, N., Pasqualetto, E., & Soultanis, E. (2021). Infinitesimal Hilbertianity of Locally CAT(κ)-Spaces. <i>Journal of Geometric Analysis</i>, <i>31</i>(8), 7621-7685. <a href="https://doi.org/10.1007/s12220-020-00543-7" target="_blank">https://doi.org/10.1007/s12220-020-00543-7</a>
dc.identifier.otherCONVID_43536864
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/72532
dc.description.abstractWe show that, given a metric space (Y,d)(Y,d) of curvature bounded from above in the sense of Alexandrov, and a positive Radon measure μμ on YY giving finite mass to bounded sets, the resulting metric measure space (Y,d,μ)(Y,d,μ) is infinitesimally Hilbertian, i.e. the Sobolev space W1,2(Y,d,μ)W1,2(Y,d,μ) is a Hilbert space. The result is obtained by constructing an isometric embedding of the ‘abstract and analytical’ space of derivations into the ‘concrete and geometrical’ bundle whose fibre at x∈Yx∈Y is the tangent cone at x of YY. The conclusion then follows from the fact that for every x∈Yx∈Y such a cone is a CAT(0)CAT(0) space and, as such, has a Hilbert-like structure.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesJournal of Geometric Analysis
dc.rightsCC BY 4.0
dc.subject.otherCAT spaces
dc.subject.otherSobolev spaces
dc.subject.othermetric geometry
dc.titleInfinitesimal Hilbertianity of Locally CAT(κ)-Spaces
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202011096565
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange7621-7685
dc.relation.issn1050-6926
dc.relation.numberinseries8
dc.relation.volume31
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2020
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysometriset avaruudet
dc.subject.ysogeometria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p27753
jyx.subject.urihttp://www.yso.fi/onto/yso/p8708
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s12220-020-00543-7
jyx.fundinginformationThis research has been supported by the MIUR SIR-Grant ‘Nonsmooth Differential Geometry’ (RBSI147UG4). Open access funding provided by Scuola Internazionale Superiore di Studi Avanzati – SISSA within the CRUI-CARE Agreement.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0